Type-2 fuzzy linear systems

Type-2 fuzzy linear systems Fuzzy linear systems (FLSs) are used in practical situations, where some of the systems’ parameters or variables are uncertain. To date, investigations conducted on FLSs are restricted to those in which the uncertainty is assumed to be modeled by Type-1 fuzzy sets (T1FSs). However, there are many situations, where considering the uncertainty as T1FSs may not be possible due to different interpretations of experts about the uncertainty. Moreover, solutions of FLSs are T1FSs which do not provide any information about a measure of the dispersion of uncertainty around the T1FSs. Therefore, in this research, a model of uncertain linear equations’ system called a type-2 fuzzy linear system is presented to overcome the shortcomings. The uncertainty is represented by a special class of type-2 fuzzy sets—triangular perfect quasi-type-2 fuzzy numbers. In addition, conditions for the existence of a unique type–2 fuzzy solution to the linear system are derived. A definition of a type-2 fuzzy solution is also given. The applicability of the proposed model is illustrated using examples in the pulp and paper industry and electrical engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Computing Springer Journals

Type-2 fuzzy linear systems

Loading next page...
 
/lp/springer_journal/type-2-fuzzy-linear-systems-rUI1K3akP7
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics)
ISSN
2364-4966
eISSN
2364-4974
D.O.I.
10.1007/s41066-016-0037-y
Publisher site
See Article on Publisher Site

Abstract

Fuzzy linear systems (FLSs) are used in practical situations, where some of the systems’ parameters or variables are uncertain. To date, investigations conducted on FLSs are restricted to those in which the uncertainty is assumed to be modeled by Type-1 fuzzy sets (T1FSs). However, there are many situations, where considering the uncertainty as T1FSs may not be possible due to different interpretations of experts about the uncertainty. Moreover, solutions of FLSs are T1FSs which do not provide any information about a measure of the dispersion of uncertainty around the T1FSs. Therefore, in this research, a model of uncertain linear equations’ system called a type-2 fuzzy linear system is presented to overcome the shortcomings. The uncertainty is represented by a special class of type-2 fuzzy sets—triangular perfect quasi-type-2 fuzzy numbers. In addition, conditions for the existence of a unique type–2 fuzzy solution to the linear system are derived. A definition of a type-2 fuzzy solution is also given. The applicability of the proposed model is illustrated using examples in the pulp and paper industry and electrical engineering.

Journal

Granular ComputingSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off