Two-spinors, oscillator algebras, and qubits: aspects of manifestly covariant approach to relativistic quantum information

Two-spinors, oscillator algebras, and qubits: aspects of manifestly covariant approach to... The first part of the paper reviews applications of 2-spinor methods to relativistic qubits (analogies between tetrads in Minkowski space and 2-qubit states, qubits defined by means of null directions and their role for elimination of the Peres-Scudo-Terno phenomenon, advantages and disadvantages of relativistic polarization operators defined by the Pauli-Lubanski vector, manifestly covariant approach to unitary representations of inhomogeneous SL(2,C)). The second part deals with electromagnetic fields quantized by means of harmonic oscillator Lie algebras (not necessarily taken in irreducible representations). As opposed to non-relativistic singlets one has to distinguish between maximally symmetric and EPR states. The distinction is one of the sources of ‘strange’ relativistic properties of EPR correlations. As an example, EPR averages are explicitly computed for linear polarizations in states that are antisymmetric in both helicities and momenta. The result takes the familiar form ±p cos 2(α − β) independently of the choice of representation of harmonic oscillator algebra. Parameter p is determined by spectral properties of detectors and the choice of EPR state, but is unrelated to detector efficiencies. Brief analysis of entanglement with vacuum and vacuum violation of Bell’s inequality is given. The effects are related to inequivalent notions of vacuum states. Technical appendices discuss details of the representation I employ in field quantization. In particular, M-shaped delta-sequences are used to define Dirac deltas regular at zero. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Two-spinors, oscillator algebras, and qubits: aspects of manifestly covariant approach to relativistic quantum information

Loading next page...
 
/lp/springer_journal/two-spinors-oscillator-algebras-and-qubits-aspects-of-manifestly-TUY595Z901
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0163-4
Publisher site
See Article on Publisher Site

References

  • Can quantum-mechanical description of physical reality be considered complete?   
    Einstein, A.; Podolsky, B.; Rosen, N.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial