Two-space variability compensation technique for speaker verification in short length and reverberant environments

Two-space variability compensation technique for speaker verification in short length and... The performance of state-of-the-art speaker verification in uncontrolled environment is affected by different variabilities. Short duration variability is very common in these scenarios and causes the speaker verification performance to decrease quickly while the duration of verification utterances decreases. Linear discriminant analysis (LDA) is the most common session variability compensation algorithm, nevertheless it presents some shortcomings when trained with insufficient data. In this paper we introduce two methods for session variability compensation to deal with short-length utterances on i-vector space. The first method proposes to incorporate the short duration variability information in the within-class variance estimation process. The second proposes to compensate the session and short duration variabilities in two different spaces with LDA algorithms (2S-LDA). First, we analyzed the behavior of the within and between class scatters in the first proposed method. Then, both proposed methods are evaluated on telephone session from NIST SRE-08 for different duration of the evaluation utterances: full (average 2.5 min), 20, 15, 10 and 5 s. The 2S-LDA method obtains good results on different short-length utterances conditions in the evaluations, with a EER relative average improvement of 1.58%, compared to the best baseline (WCCN[LDA]). Finally, we applied the 2S-LDA method in speaker verification under reverberant environment, using different reverberant conditions from Reverb challenge 2013, obtaining an improvement of 8.96 and 23% under matched and mismatched reverberant conditions, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

Two-space variability compensation technique for speaker verification in short length and reverberant environments

Loading next page...
 
/lp/springer_journal/two-space-variability-compensation-technique-for-speaker-verification-rwrhtoFq3d
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9414-4
Publisher site
See Article on Publisher Site

Abstract

The performance of state-of-the-art speaker verification in uncontrolled environment is affected by different variabilities. Short duration variability is very common in these scenarios and causes the speaker verification performance to decrease quickly while the duration of verification utterances decreases. Linear discriminant analysis (LDA) is the most common session variability compensation algorithm, nevertheless it presents some shortcomings when trained with insufficient data. In this paper we introduce two methods for session variability compensation to deal with short-length utterances on i-vector space. The first method proposes to incorporate the short duration variability information in the within-class variance estimation process. The second proposes to compensate the session and short duration variabilities in two different spaces with LDA algorithms (2S-LDA). First, we analyzed the behavior of the within and between class scatters in the first proposed method. Then, both proposed methods are evaluated on telephone session from NIST SRE-08 for different duration of the evaluation utterances: full (average 2.5 min), 20, 15, 10 and 5 s. The 2S-LDA method obtains good results on different short-length utterances conditions in the evaluations, with a EER relative average improvement of 1.58%, compared to the best baseline (WCCN[LDA]). Finally, we applied the 2S-LDA method in speaker verification under reverberant environment, using different reverberant conditions from Reverb challenge 2013, obtaining an improvement of 8.96 and 23% under matched and mismatched reverberant conditions, respectively.

Journal

International Journal of Speech TechnologySpringer Journals

Published: May 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off