Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis

Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and... Methyl jasmonate (MeJA) is one of the most effective inducers of taxol biosynthetic genes, particularly the tasy gene. However, the mechanism underlying the regulation of tasy by MeJA is still unknown. In this study, a 550-bp 5′-flanking sequence was obtained and confirmed as the promoter of the tasy gene. Deletion analysis revealed that the fragment containing a GCC-box from −150 to −131 was the crucial jasmonate (JA)-responsive element, designated as JRE. Using JRE as bait, two binding proteins, namely TcERF12 and TcERF15, were discovered. Sequence alignment and phylogenetic analysis showed that TcERF12 was related to the repressor AtERF3, while TcERF15 was more related to the activator ORA59; these are typical GCC-box-binding ethylene-responsive factors. Both could significantly respond to MeJA for 10 and 4.5 times, respectively, in 0.5 h. When the two TcERFs were overexpressed in Taxus cells, tasy gene expression decreased by 2.1 times in TcERF12-overexpressing cells, but increased by 2.5 times in TcERF15-overexpressing cells. Results indicated that TcERF12 and TcERF15 were negative and positive regulators, respectively, in the JA signal transduction to the tasy gene by binding the GCC-box in the JRE of the tasy promoter. Our results promote further research on regulatory mechanisms of taxol biosynthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis

Loading next page...
 
/lp/springer_journal/two-jasmonate-responsive-factors-tcerf12-and-tcerf15-respectively-act-rzmsA7ThDW
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0382-2
Publisher site
See Article on Publisher Site

Abstract

Methyl jasmonate (MeJA) is one of the most effective inducers of taxol biosynthetic genes, particularly the tasy gene. However, the mechanism underlying the regulation of tasy by MeJA is still unknown. In this study, a 550-bp 5′-flanking sequence was obtained and confirmed as the promoter of the tasy gene. Deletion analysis revealed that the fragment containing a GCC-box from −150 to −131 was the crucial jasmonate (JA)-responsive element, designated as JRE. Using JRE as bait, two binding proteins, namely TcERF12 and TcERF15, were discovered. Sequence alignment and phylogenetic analysis showed that TcERF12 was related to the repressor AtERF3, while TcERF15 was more related to the activator ORA59; these are typical GCC-box-binding ethylene-responsive factors. Both could significantly respond to MeJA for 10 and 4.5 times, respectively, in 0.5 h. When the two TcERFs were overexpressed in Taxus cells, tasy gene expression decreased by 2.1 times in TcERF12-overexpressing cells, but increased by 2.5 times in TcERF15-overexpressing cells. Results indicated that TcERF12 and TcERF15 were negative and positive regulators, respectively, in the JA signal transduction to the tasy gene by binding the GCC-box in the JRE of the tasy promoter. Our results promote further research on regulatory mechanisms of taxol biosynthesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off