Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants

Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants Although iron deficiency poses severe nutritional problems to crop plants, to date iron transporters have only been characterized from the model plant Arabidopsis thaliana. To extend our molecular knowledge of Fe transport in crop plants, we have isolated two cDNAs (LeIRT1 and LeIRT2) from a library constructed from roots of iron-deficient tomato (Lycopersicon esculentum) plants, using the Arabidopsis iron transporter cDNA, IRT1, as a probe. Their deduced polypeptides display 64% and 62% identical amino acid residues to the IRT1 protein, respectively. Transcript level analyses revealed that both genes were predominantly expressed in roots. Transcription of LeIRT2 was unaffected by the iron status of the plant, while expression of LeIRT1 was strongly enhanced by iron limitation. The growth defect of an iron uptake-deficient yeast (Saccharomyces cerevisiae) mutant was complemented by LeIRT1 and LeIRT2 when ligated to a yeast expression plasmid. Transport assays revealed that iron uptake was restored in the transformed yeast cells. This uptake was temperature-dependent and saturable, and Fe2+ rather than Fe3+ was the preferred substrate. A number of divalent metal ions inhibited Fe2+ uptake when supplied at 100-fold or 10-fold excess. Manganese, zinc and copper uptake-deficient yeast mutants were also rescued by the two tomato cDNAs, suggesting that their gene products have a broad substrate range. The gene structure was determined by polymerase chain reaction experiments and, surprisingly, both genes are arranged in tandem with a tail-to-tail orientation. Plant Molecular Biology Springer Journals

Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants

Loading next page...
Kluwer Academic Publishers
Copyright © 2001 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial