Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae

Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga... The red algal chloroplast genome encodes an essential prokaryotic cell division gene, ftsH, which has never been found in the mitochondrial genome of any organism. To compare the conserved prokaryote-derived mechanism for mitochondrial division with that of chloroplasts, we cloned chloroplast- and nuclear-encoded ftsH genes from the primitive red alga Cyanidioschyzon merolae. The deduced amino-acid sequence of chloroplast ftsH (ftsHcp) consists of 603 amino acids and shows the highest similarity with algal-chloroplast and cyanobacterial FtsH. On the other hand, the nuclear-encoded ftsH (ftsH2) encodes a protein of 920 amino acids and has the highest similarity with two yeast mitochondrial FtsHs, Rca1p and Afg3p. Furthermore, the amino-terminal extension of FtsH2 appears to be an amphipathic α-helix, a characteristic mitochondrial targeting signal, suggesting that FtsH2 is a mitochondrial protein. Southern hybridization revealed that ftsH2 is a single gene located on chromosome III of the 17 C. merolae chromosomes. The level of expression of the 3.0 and 4.0 kb transcripts of this gene decreased in concert during the organelle division phase of a synchronized culture, indicating a cell-cycle-dependent manner of ftsH2 transcription, while northern hybridization did not detect ftsHcp transcripts. Nevertheless, reverse transcription-PCR and immunoblotting demonstrated for the first time that chloroplast-encoded ftsH is transcriptionally and translationally active. Overproduction of FtsHcp and FtsH2 in Escherichia coli disrupted cytokinesis and produced filamentous cells, but had no effect on the replication, segregation, or distribution of their nucleoids, as also occurs in ftsH-deficient E. coli. These observations suggest the possible involvement of both C. merolae FtsHs in organelle division. Plant Molecular Biology Springer Journals

Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae

Loading next page...
Kluwer Academic Publishers
Copyright © 1999 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial