Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores

Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of... A cDNA clone, Ids3 (iron deficiency-specific clone 3), was isolated from an Fe-deficient-root cDNA library of Hordeum vulgare. Ids3 encodes a protein of 339 amino acids with a calculated molecular mass of 37.7 kDa, and its amino acid sequence shows a high degree of similarity with those of plant and fungal 2-oxoglutarate-dependent dioxygenases. One aspartate and two histidine residues for ferrous Fe binding (Asp-211, His-209, His-265) and arginine and serine residues for 2-oxoglutarate binding (Arg-275, Ser-277) are conserved in the predicted amino acid sequence of Ids3. Ids3 expression was rapidly induced by Fe deficiency, and was suppressed by re-supply of Fe. Among eight graminaceous species tested, Ids3 expression was observed only in Fe-deficient roots of H. vulgare and Secale cereale, which not only secrete 2′-deoxymugineic acid (DMA), but also mugineic acid (MA) and 3-epihydroxymugineic acid (epiHMA, H. vulgare), and 3-hydroxymugineic acid (HMA, S. cereale). The Ids3 gene is encoded on the long arm of chromosome 4H of H. vulgare, which also carries the hydroxylase gene that converts DMA to MA. Moreover, the Ids2 gene, which is the plant dioxygenase with the highest homology to Ids3, is encoded on the long arm of chromosome 7H of H. vulgare, which carries the hydroxylase gene that converts MA to epiHMA. The observed expression patterns of the Ids3 and Ids2 genes strongly suggest that IDS3 is an enzyme that hydroxylates the C-2′ positions of DMA and epiHDMA, while IDS2 hydroxylates the C-3 positions of MA and DMA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores

Loading next page...
 
/lp/springer_journal/two-dioxygenase-genes-ids3-and-ids2-from-hordeum-vulgare-are-involved-AvvqZm7KEM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006491521586
Publisher site
See Article on Publisher Site

Abstract

A cDNA clone, Ids3 (iron deficiency-specific clone 3), was isolated from an Fe-deficient-root cDNA library of Hordeum vulgare. Ids3 encodes a protein of 339 amino acids with a calculated molecular mass of 37.7 kDa, and its amino acid sequence shows a high degree of similarity with those of plant and fungal 2-oxoglutarate-dependent dioxygenases. One aspartate and two histidine residues for ferrous Fe binding (Asp-211, His-209, His-265) and arginine and serine residues for 2-oxoglutarate binding (Arg-275, Ser-277) are conserved in the predicted amino acid sequence of Ids3. Ids3 expression was rapidly induced by Fe deficiency, and was suppressed by re-supply of Fe. Among eight graminaceous species tested, Ids3 expression was observed only in Fe-deficient roots of H. vulgare and Secale cereale, which not only secrete 2′-deoxymugineic acid (DMA), but also mugineic acid (MA) and 3-epihydroxymugineic acid (epiHMA, H. vulgare), and 3-hydroxymugineic acid (HMA, S. cereale). The Ids3 gene is encoded on the long arm of chromosome 4H of H. vulgare, which also carries the hydroxylase gene that converts DMA to MA. Moreover, the Ids2 gene, which is the plant dioxygenase with the highest homology to Ids3, is encoded on the long arm of chromosome 7H of H. vulgare, which carries the hydroxylase gene that converts MA to epiHMA. The observed expression patterns of the Ids3 and Ids2 genes strongly suggest that IDS3 is an enzyme that hydroxylates the C-2′ positions of DMA and epiHDMA, while IDS2 hydroxylates the C-3 positions of MA and DMA.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off