Two dimensional cuckoo search optimization algorithm based despeckling filter for the real ultrasound images

Two dimensional cuckoo search optimization algorithm based despeckling filter for the real... A clinical ultrasound imaging plays a significant role in the proper diagnosis of patients because, it is a cost-effective and non-invasive technique in comparison with other methods. The speckle noise contamination caused by ultrasound images during the acquisition process degrades its visual quality, which makes the diagnosis task difficult for physicians. Hence, to improve their visual quality, despeckling filters are commonly used for processing of such images. However, several dis- advantages of existing despeckling filters discourage the use of existing despeckling filters to reduce the effect of speckle noise. In this paper, two dimensional cuckoo search optimization algorithm based despeckling filter is proposed for avoiding limitations of various existing despeckling filters. Proposed despeckling filter is developed by combining fast non-local means filter and 2D finite impulse response (FIR) filter with cuckoo search optimization algorithm. In the proposed despeckling filter, the coefficients of 2D FIR filter are optimized by using the cuckoo search optimization algorithm. The quantitative results comparison between the proposed despeckling filter and other existing despeckling filters are analyzed by evaluating PSNR, MSE, MAE, and SSIM values for different real ultrasound images. Results reveal that the visual quality obtained by the proposed despeckling filter is better than other http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ambient Intelligence and Humanized Computing Springer Journals

Two dimensional cuckoo search optimization algorithm based despeckling filter for the real ultrasound images

Loading next page...
 
/lp/springer_journal/two-dimensional-cuckoo-search-optimization-algorithm-based-despeckling-jIrLEfp10S
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Robotics and Automation; User Interfaces and Human Computer Interaction
ISSN
1868-5137
eISSN
1868-5145
D.O.I.
10.1007/s12652-018-0891-3
Publisher site
See Article on Publisher Site

Abstract

A clinical ultrasound imaging plays a significant role in the proper diagnosis of patients because, it is a cost-effective and non-invasive technique in comparison with other methods. The speckle noise contamination caused by ultrasound images during the acquisition process degrades its visual quality, which makes the diagnosis task difficult for physicians. Hence, to improve their visual quality, despeckling filters are commonly used for processing of such images. However, several dis- advantages of existing despeckling filters discourage the use of existing despeckling filters to reduce the effect of speckle noise. In this paper, two dimensional cuckoo search optimization algorithm based despeckling filter is proposed for avoiding limitations of various existing despeckling filters. Proposed despeckling filter is developed by combining fast non-local means filter and 2D finite impulse response (FIR) filter with cuckoo search optimization algorithm. In the proposed despeckling filter, the coefficients of 2D FIR filter are optimized by using the cuckoo search optimization algorithm. The quantitative results comparison between the proposed despeckling filter and other existing despeckling filters are analyzed by evaluating PSNR, MSE, MAE, and SSIM values for different real ultrasound images. Results reveal that the visual quality obtained by the proposed despeckling filter is better than other

Journal

Journal of Ambient Intelligence and Humanized ComputingSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off