Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection

Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining... In this paper the geometry of two- and three-qubit states under local unitary groups is discussed. We first review the one-qubit geometry and its relation with Riemannian sphere under the action of group SU(2). We show that the quaternionic stereographic projection intertwines between local unitary group $$SU(2)\otimes SU(2)$$ S U ( 2 ) ⊗ S U ( 2 ) and quaternionic Möbius transformation. The invariant term appearing in this operation is related to concurrence measure. Yet, there exists the same intertwining stereographic projection for much more global group Sp(2), generalizing the familiar Bloch sphere in two-level systems. Subsequently, we introduce octonionic stereographic projection and octonionic conformal map (or octonionic Möbius maps) for three-qubit states and find evidence that they may have invariant terms under local unitary operations which shows that both maps are entanglement sensitive. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection

Loading next page...
 
/lp/springer_journal/two-and-three-qubit-geometry-quaternionic-and-octonionic-conformal-1ghk00bC3z
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1172-0
Publisher site
See Article on Publisher Site

Abstract

In this paper the geometry of two- and three-qubit states under local unitary groups is discussed. We first review the one-qubit geometry and its relation with Riemannian sphere under the action of group SU(2). We show that the quaternionic stereographic projection intertwines between local unitary group $$SU(2)\otimes SU(2)$$ S U ( 2 ) ⊗ S U ( 2 ) and quaternionic Möbius transformation. The invariant term appearing in this operation is related to concurrence measure. Yet, there exists the same intertwining stereographic projection for much more global group Sp(2), generalizing the familiar Bloch sphere in two-level systems. Subsequently, we introduce octonionic stereographic projection and octonionic conformal map (or octonionic Möbius maps) for three-qubit states and find evidence that they may have invariant terms under local unitary operations which shows that both maps are entanglement sensitive.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 13, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off