Two α(1,2) fucosyltransferase genes on porcine Chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci

Two α(1,2) fucosyltransferase genes on porcine Chromosome 6q11 are closely linked to the blood... The Escherichia coli F18 receptor locus (ECF18R) has been genetically mapped to the halothane linkage group on porcine Chromosome (Chr) 6. In an attempt to obtain candidate genes for this locus, we isolated 5 cosmids containing the α(1,2)fucosyltransferase genes FUT1, FUT2, and the pseudogene FUT2P from a porcine genomic library. Mapping by fluorescence in situ hybridization placed all these clones in band q11 of porcine Chr 6 (SSC6q11). Sequence analysis of the cosmids resulted in the characterization of an open reading frame (ORF), 1098 bp in length, that is 82.3% identical to the human FUT1 sequence; a second ORF, 1023 bp in length, 85% identical to the human FUT2 sequence; and a third FUT-like sequence thought to be a pseudogene. The FUT1 and FUT2 loci therefore seem to be the porcine equivalents of the human blood group H and Secretor loci. Direct sequencing of the two ORFs in swine being either susceptible or resistant to adhesion and colonization by F18 fimbriated Escherichia coli (ECF18) revealed two polymorphisms at bp 307 (M307) and bp 857 (M857) of the FUT1 ORF. Analysis of these mutations in 34 Swiss Landrace families with 221 progeny showed close linkage with the locus controlling resistance and susceptibility to E. coli F18 adhesion and colonization in the small intestine (ECF18R), and with the locus of the blood group inhibitor S. A high linkage disequilibrium of M307–ECF18R in Large White pigs makes the M307 mutation a good marker for marker-assisted selection of E. coli F18 adhesion-resistant animals in this breed. Whether the FUT1 or possibly the FUT2 gene products are involved in the synthesis of carbohydrate structures responsible for bacterial adhesion remains to be determined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Two α(1,2) fucosyltransferase genes on porcine Chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci

Loading next page...
 
/lp/springer_journal/two-1-2-fucosyltransferase-genes-on-porcine-chromosome-6q11-are-3l37Npu6OU
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900556
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial