Turnover Rate of the γ-Aminobutyric Acid Transporter GAT1

Turnover Rate of the γ-Aminobutyric Acid Transporter GAT1 We combined electrophysiological and freeze-fracture methods to estimate the unitary turnover rate of the γ-aminobutyric acid (GABA) transporter GAT1. Human GAT1 was expressed in Xenopus laevis oocytes, and individual cells were used to measure and correlate the macroscopic rate of GABA transport and the total number of transporters in the plasma membrane. The two-electrode voltage-clamp method was used to measure the transporter-mediated macroscopic current evoked by GABA ( $$ {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } $$ ), macroscopic charge movements (Q NaCl) evoked by voltage pulses and whole-cell capacitance. The same cells were then examined by freeze-fracture and electron microscopy in order to estimate the total number of GAT1 copies in the plasma membrane. GAT1 expression in the plasma membrane led to the appearance of a distinct population of 9-nm freeze-fracture particles which represented GAT1 dimers. There was a direct correlation between Q NaCl and the total number of transporters in the plasma membrane. This relationship yielded an apparent valence of 8 ± 1 elementary charges per GAT1 particle. Assuming that the monomer is the functional unit, we obtained 4 ± 1 elementary charges per GAT1 monomer. This information and the relationship between $$ {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } $$ and Q NaCl were used to estimate a GAT1 unitary turnover rate of 15 ± 2 s−1 (21°C, −50 mV). The temperature and voltage dependence of GAT1 were used to estimate the physiological turnover rate to be 79–93 s−1 (37°C, −50 to −90 mV). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Loading next page...
 
/lp/springer_journal/turnover-rate-of-the-aminobutyric-acid-transporter-gat1-pjJSWpuCBm
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9073-5
Publisher site
See Article on Publisher Site

Abstract

We combined electrophysiological and freeze-fracture methods to estimate the unitary turnover rate of the γ-aminobutyric acid (GABA) transporter GAT1. Human GAT1 was expressed in Xenopus laevis oocytes, and individual cells were used to measure and correlate the macroscopic rate of GABA transport and the total number of transporters in the plasma membrane. The two-electrode voltage-clamp method was used to measure the transporter-mediated macroscopic current evoked by GABA ( $$ {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } $$ ), macroscopic charge movements (Q NaCl) evoked by voltage pulses and whole-cell capacitance. The same cells were then examined by freeze-fracture and electron microscopy in order to estimate the total number of GAT1 copies in the plasma membrane. GAT1 expression in the plasma membrane led to the appearance of a distinct population of 9-nm freeze-fracture particles which represented GAT1 dimers. There was a direct correlation between Q NaCl and the total number of transporters in the plasma membrane. This relationship yielded an apparent valence of 8 ± 1 elementary charges per GAT1 particle. Assuming that the monomer is the functional unit, we obtained 4 ± 1 elementary charges per GAT1 monomer. This information and the relationship between $$ {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } $$ and Q NaCl were used to estimate a GAT1 unitary turnover rate of 15 ± 2 s−1 (21°C, −50 mV). The temperature and voltage dependence of GAT1 were used to estimate the physiological turnover rate to be 79–93 s−1 (37°C, −50 to −90 mV).

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off