Turbulent wall pressure reduction using suction control

Turbulent wall pressure reduction using suction control A study of the fluctuating wall pressure beneath a 2-d turbulent boundary layer was conducted in a water tunnel with Reynolds numbers, based on momentum thickness, ranging between 2,100 and 4,300. The boundary layer was perturbed with steady mild suction to assess the effect of upstream suction on the fluctuating wall pressure measured downstream of the suction slit. Wall pressure signatures were captured using a custom-fabricated piezo-ceramic array with d + values ranging between 64 and 107. Likewise, the velocity field was measured with a laser Doppler velocimeter with l + values ranging between 4.0 and 6.7 for the lowest and highest Re θ investigated. Estimates of the wall pressure spectra revealed a noticeable hydrodynamic peak that scaled reasonably well with outer variables and with an average convective speed of 75 % of the free stream velocity (based on unconditionally sampled pressure time series). Two boundary layer suction control cases were studied corresponding to suction rates of less then 30 % of the boundary layer momentum. The findings reveal how only modest amounts of suction are needed to reduce upwards 50–60 % of the hydrodynamic ridge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Turbulent wall pressure reduction using suction control

Loading next page...
 
/lp/springer_journal/turbulent-wall-pressure-reduction-using-suction-control-89Ry0agvK3
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1436-8
Publisher site
See Article on Publisher Site

Abstract

A study of the fluctuating wall pressure beneath a 2-d turbulent boundary layer was conducted in a water tunnel with Reynolds numbers, based on momentum thickness, ranging between 2,100 and 4,300. The boundary layer was perturbed with steady mild suction to assess the effect of upstream suction on the fluctuating wall pressure measured downstream of the suction slit. Wall pressure signatures were captured using a custom-fabricated piezo-ceramic array with d + values ranging between 64 and 107. Likewise, the velocity field was measured with a laser Doppler velocimeter with l + values ranging between 4.0 and 6.7 for the lowest and highest Re θ investigated. Estimates of the wall pressure spectra revealed a noticeable hydrodynamic peak that scaled reasonably well with outer variables and with an average convective speed of 75 % of the free stream velocity (based on unconditionally sampled pressure time series). Two boundary layer suction control cases were studied corresponding to suction rates of less then 30 % of the boundary layer momentum. The findings reveal how only modest amounts of suction are needed to reduce upwards 50–60 % of the hydrodynamic ridge.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 20, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off