Turbulent structure of the subsurface layer of the sea according to the data of the Sigma-1 measuring complex

Turbulent structure of the subsurface layer of the sea according to the data of the Sigma-1... We present the results of experimental investigations of the characteristics of turbulence in the layer of wave-induced mixing. The data on the fluctuations of velocity, temperature, and conductivity are obtained with the help of a Sigma-1 measuring complex. The computed values of the dissipation rate of turbulent energy are compared with different models proposed for the subsurface layer. It is shown that the available models fail to guarantee satisfactory agreement of the numerical results with the experimental data for the layer of active wave action and, in particular, in the presence of swell. This leads us to the conclusion concerning the necessity of parametrization and assimilation of more complete data on the state of the sea surface, the structure of currents, and the surface layer of the atmosphere in the models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Turbulent structure of the subsurface layer of the sea according to the data of the Sigma-1 measuring complex

Loading next page...
 
/lp/springer_journal/turbulent-structure-of-the-subsurface-layer-of-the-sea-according-to-jx5eFJtmwi
Publisher
Springer US
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Geosciences; Oceanography; Remote Sensing/Photogrammetry; Meteorology/Climatology; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-007-0007-7
Publisher site
See Article on Publisher Site

Abstract

We present the results of experimental investigations of the characteristics of turbulence in the layer of wave-induced mixing. The data on the fluctuations of velocity, temperature, and conductivity are obtained with the help of a Sigma-1 measuring complex. The computed values of the dissipation rate of turbulent energy are compared with different models proposed for the subsurface layer. It is shown that the available models fail to guarantee satisfactory agreement of the numerical results with the experimental data for the layer of active wave action and, in particular, in the presence of swell. This leads us to the conclusion concerning the necessity of parametrization and assimilation of more complete data on the state of the sea surface, the structure of currents, and the surface layer of the atmosphere in the models.

Journal

Physical OceanographySpringer Journals

Published: Aug 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off