Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces

Turbulent friction drag reduction using electroactive polymer and electromagnetically driven... This work reports aerodynamic testing of two spanwise-oscillating surfaces fabricated out of electroactive polymers (EAPs) in the dielectric form of actuation, and of an electromagnetic-driven linear motor. Hot-wire and PIV measurements of velocity and direct measurement of friction drag using a drag balance are presented. A maximum of 16 % surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient, was obtained. Among other quantities, the spatial dependence of the drag reduction was investigated. When this spatial transient and portions which are static are accounted for, the direct drag measurements complement the hot-wire data. PIV measurements, where the laser beam was parallel to the oscillating surface at y + ≈ 15, support the hot-wire data. The two actuators are original in design, and significant contributions have been made to the development of EAPs. This experiment is the first to aerodynamically test EAP actuators at such a large scale and at a relatively moderate Re. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces

Loading next page...
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial