Turbulent flow in a channel at a low Reynolds number

Turbulent flow in a channel at a low Reynolds number A two-component laser Doppler velocimeter with high spatial and temporal resolution was used to obtain measurements for fully developed turbulent flow of water through a channel with an aspect ratio of 12 : 1 at Re=5700 (based on the centerline velocity and the half-height of the channel). Statistical quantities that were determined are the mean streamwise velocity, the root-mean-square of the fluctuations of the streamwise and the normal velocities, the Reynolds shear stress and higher order moments. Turbulence production is calculated from these quantities. Turbulence statistics obtained from experiments are compared with results from a direct numerical simulation at the same Reynolds number. The good agreement validates a recent DNS, at Re=5700, which is approximately twice as large as used in most previous studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Turbulent flow in a channel at a low Reynolds number

Loading next page...
 
/lp/springer_journal/turbulent-flow-in-a-channel-at-a-low-reynolds-number-OLF9FiLDXx
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050256
Publisher site
See Article on Publisher Site

Abstract

A two-component laser Doppler velocimeter with high spatial and temporal resolution was used to obtain measurements for fully developed turbulent flow of water through a channel with an aspect ratio of 12 : 1 at Re=5700 (based on the centerline velocity and the half-height of the channel). Statistical quantities that were determined are the mean streamwise velocity, the root-mean-square of the fluctuations of the streamwise and the normal velocities, the Reynolds shear stress and higher order moments. Turbulence production is calculated from these quantities. Turbulence statistics obtained from experiments are compared with results from a direct numerical simulation at the same Reynolds number. The good agreement validates a recent DNS, at Re=5700, which is approximately twice as large as used in most previous studies.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 19, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off