Turbulent behaviour within a coastal boundary layer, observations and modelling at the Isola del Giglio

Turbulent behaviour within a coastal boundary layer, observations and modelling at the Isola del... The hydrodynamics of coastal areas is characterized by the interaction among phenomena occurring at different spatial and temporal scales, such as the interaction of a large-scale ocean current with the local bathymetry and coastline, and local forcing conditions. In order to take into account all relevant phenomena, the study of the hydrodynamics of coastal zones requires a high-spatial and temporal resolution for both observations and simulation of local currents. This resolution can be obtained by using X-band radar, which allows simultaneous measurement of waves and currents in a range of 1–3 miles from the coastline, as well as high-resolution numerical models implemented in the area and configured through multiple nesting techniques in order to reach resolutions comparable to such coastal observations. Such an integrated monitoring system was implemented at the Isola del Giglio in 2012, after the accident of the Costa Concordia ship. Results can be used as a cross-validation of data produced independently by radar observations and numerical models. In addition, results give some important insights on the dynamics of the coastal boundary layer, both for what concerns the attenuation in the profile of the depth-averaged velocities which typically occur in turbulent boundary layers, as well as for the production, detachment and evolution of vorticity produced by the interaction of large-scale ocean currents with the coastline and the subsequent time evolution of such boundary layer. This transition between large-scale regional currents and the coastal boundary layer is often neglected in regional forecasting systems, but it has an important role in the ocean turbulence processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Dynamics Springer Journals

Turbulent behaviour within a coastal boundary layer, observations and modelling at the Isola del Giglio

Loading next page...
 
/lp/springer_journal/turbulent-behaviour-within-a-coastal-boundary-layer-observations-and-9Xvj0pwRdm
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Oceanography; Geophysics/Geodesy; Atmospheric Sciences; Fluid- and Aerodynamics; Monitoring/Environmental Analysis
ISSN
1616-7341
eISSN
1616-7228
D.O.I.
10.1007/s10236-017-1080-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial