Turbulence under spilling breakers using discrete wavelets

Turbulence under spilling breakers using discrete wavelets Measurements of the kinetic energy of turbulence under spilling waves have been analysed using orthogonal wavelets. Data have been collected using 2-D laser Doppler velocimetry for pre-breaking regular waves, generated in a wave tank. The contribution of different scale vortices is computed, and also phase resolved. It is found that micro-vortices (2 mm <l<0.10 m for the tested case) and mid-size vortices (0.10 m<l<4.0 m for the tested case) are generally dominant, carrying more than 70% of the total turbulence energy under the wave crest. The phase resolved energy spectra are computed, which allows the computation of the transverse and of the longitudinal correlations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Turbulence under spilling breakers using discrete wavelets

Loading next page...
 
/lp/springer_journal/turbulence-under-spilling-breakers-using-discrete-wavelets-EyLSwOfHpN
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluids; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0545-1
Publisher site
See Article on Publisher Site

Abstract

Measurements of the kinetic energy of turbulence under spilling waves have been analysed using orthogonal wavelets. Data have been collected using 2-D laser Doppler velocimetry for pre-breaking regular waves, generated in a wave tank. The contribution of different scale vortices is computed, and also phase resolved. It is found that micro-vortices (2 mm <l<0.10 m for the tested case) and mid-size vortices (0.10 m<l<4.0 m for the tested case) are generally dominant, carrying more than 70% of the total turbulence energy under the wave crest. The phase resolved energy spectra are computed, which allows the computation of the transverse and of the longitudinal correlations.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 19, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off