Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation

Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell... Prevention of cell flocculation in large-scale fermentation is of great importance for most industrial microbes. Using Rhodococcus ruber TH3 as a model strain, we revealed that the undesired cell flocculation in a fermenter was associated with the colony dimorphism phenomenon, and it only occurred in the rough-type of cells (R-TH3) instead of the smooth-type of cells (S-TH3). By analyzing the transcriptome differences of R-TH3 and S-TH3, six representative genes with significantly upregulated transcription in S-TH3 were selected and overexpressed in R-TH3. The colony morphotypes of the six engineered strains changed to different extents, in which overexpressions of three lipid metabolism-related proteins LM1, LM2, and LM3 tuned the colony morphotype from rough to almost as smooth as in S-TH3. SEM observation confirmed the cell surface difference of the engineered strains from R-TH3. Their cell surface hydrophobicity also reduced, and the cell sedimentation behaviors were consequently changed as expected. Using R-TH3/LM1 as the representative of the engineered bacteria, fatty acids of the cell envelopes were measured. Fatty acid contents of S-TH3, R-TH3/LM1, and R-TH3 were 27.21, 24.10, and 22.24%, respectively. Among all the fatty acids, stearic acid binding to hydrophilic extracellular polysaccharides (EPS) in Rhodococcus showed significant differences among the cells. The EPS contents of S-TH3, R-TH3/LM1, and R-TH3 were 191, 163, and 137 mg/g cells. Hence, the hydrophilicity of the S-TH3 cells was mainly due to the EPS in the outermost layer of the cells. Increase of fatty acids especially stearic acid results in the increase of the bound EPS, finally bringing about the hydrophilicity enhancement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial