Tunable interaction of superconducting flux qubits in circuit QED

Tunable interaction of superconducting flux qubits in circuit QED We propose to implement tunable interaction of superconducting flux qubits with cavity-assisted interaction and strong driving. The qubits have a three-level Lambda configuration, and the decay of the excited state will be greatly suppressed due to the effective large detuning. The implemented interaction is insensitive to the cavity field state and can be controlled by modulating the phase difference of the driving fields of the qubits. In particular, our scheme is based on the typical circuit QED setup and thus will provide a simple method towards the tunable interaction of superconducting qubits. Finally, we consider the generation of two and four qubits entangled states with the constructed interaction under the influence of typical decoherence effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Tunable interaction of superconducting flux qubits in circuit QED

Loading next page...
 
/lp/springer_journal/tunable-interaction-of-superconducting-flux-qubits-in-circuit-qed-qp09zxWIxv
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1185-8
Publisher site
See Article on Publisher Site

Abstract

We propose to implement tunable interaction of superconducting flux qubits with cavity-assisted interaction and strong driving. The qubits have a three-level Lambda configuration, and the decay of the excited state will be greatly suppressed due to the effective large detuning. The implemented interaction is insensitive to the cavity field state and can be controlled by modulating the phase difference of the driving fields of the qubits. In particular, our scheme is based on the typical circuit QED setup and thus will provide a simple method towards the tunable interaction of superconducting qubits. Finally, we consider the generation of two and four qubits entangled states with the constructed interaction under the influence of typical decoherence effects.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 23, 2015

References

  • Superconducting quantum bits
    Clarke, J; Wilhelm, FK
  • Atomic physics and quantum optics using superconducting circuits
    You, JQ; Nori, F
  • Tunable interfaces for realizing universal quantum computation with topological qubits
    Xue, Z-Y; Shao, LB; Hu, Y; Zhu, S-L; Wang, ZD
  • Fast geometric gate operation of superconducting charge qubits in circuit QED
    Xue, Z-Y

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off