Tumor Necrosis Factor-α Increases Sodium and Chloride Conductance Across the Tight Junction of CACO-2 BBE, a Human Intestinal Epithelial Cell Line

Tumor Necrosis Factor-α Increases Sodium and Chloride Conductance Across the Tight Junction of... CACO-2 BBE was used to determine the response of a gastrointestinal epithelium to tumor necrosis factor-α (TNF). Incubation of CACO-2 BBE with TNF did not produce any effect on transepithelial resistance (TER) within the first 6 hr but resulted in a 40–50% reduction in TER and a 30% decrease in I sc (short circuit current) relative to time-matched control at 24 hr. The decrease in TER was sustained up to 1 week following treatment with TNF and was not associated with a significant increase in the transepithelial flux of [14C]-d-mannitol or the penetration of ruthenium red into the lateral intercellular space. Dilution potential and transepithelial 22Na+ flux studies demonstrated that TNF-treatment of CACO-2 BBE cell sheets increased the paracellular permeability of the epithelium to Na+ and Cl−. The increased transepithelial permeability did not associate with an increase in the incidence of apoptosis. However, there was a TNF-dependent increase in [3H]-thymidine labeling that was not accompanied by a change in DNA content of the cell sheet. The increase in transepithelial permeability was concluded to be across the tight junction because: (i) 1 mm apical amiloride reduced the basolateral to apical flux of 22Na+, and (ii) dilution potential studies revealed a bidirectionally increased permeability to both Na+ and Cl−. These data suggest that the increase in transepithelial permeability across TNF-treated CACO-2 BBE cell sheets arises from an alteration in the charge selectivity of the paracellular conductive pathway that is not accompanied by a change in its size selectivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Tumor Necrosis Factor-α Increases Sodium and Chloride Conductance Across the Tight Junction of CACO-2 BBE, a Human Intestinal Epithelial Cell Line

Loading next page...
 
/lp/springer_journal/tumor-necrosis-factor-increases-sodium-and-chloride-conductance-across-600j7aLjBM
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900333
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial