Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel

Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2–GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of α-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel

Loading next page...
 
/lp/springer_journal/tubulin-as-a-binding-partner-of-the-heag2-voltage-gated-potassium-sesGkKFJ4i
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9104-x
Publisher site
See Article on Publisher Site

Abstract

The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2–GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of α-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 6, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off