Tubular immaturity causes erythropoietin-deficiency anemia of prematurity in preterm neonates

Tubular immaturity causes erythropoietin-deficiency anemia of prematurity in preterm neonates Kidneys are physiologically hypoxic due to huge oxygen consumption for tubular reabsorption. The physiological hypoxia makes the kidney an appropriate organ for sensitively detecting oxygen levels and producing erythropoietin (EPO). In preterm neonates, immature kidneys cannot produce sufficient EPO, which results in anemia of prematurity (AOP). The cause of EPO insufficiency in AOP has been unclear, therefore current therapeutic options are transfusion and injection of recombinant human EPO. This report shows that the cause of insufficient EPO production in AOP is elevated renal oxygen levels due to poor oxygen consumption by immature tubules. Neonatal mice with AOP showed low tubular transporter expression and elevated renal oxygen levels compared with those without AOP. Enhancing transporter expression in AOP mice induced renal hypoxia and EPO production. In preterm neonates, red blood cell counts, hemoglobin levels, and hematocrit levels correlated with tubular function, but not with serum creatinine, gestational age, or birth weight. Furthermore, pharmacological upregulation of hypoxia signaling ameliorated AOP in mice. These data suggest that tubular maturation with increased oxygen consumption is required for renal EPO production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Tubular immaturity causes erythropoietin-deficiency anemia of prematurity in preterm neonates

Loading next page...
 
/lp/springer_journal/tubular-immaturity-causes-erythropoietin-deficiency-anemia-of-N7QxZZ0ysA
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22791-y
Publisher site
See Article on Publisher Site

Abstract

Kidneys are physiologically hypoxic due to huge oxygen consumption for tubular reabsorption. The physiological hypoxia makes the kidney an appropriate organ for sensitively detecting oxygen levels and producing erythropoietin (EPO). In preterm neonates, immature kidneys cannot produce sufficient EPO, which results in anemia of prematurity (AOP). The cause of EPO insufficiency in AOP has been unclear, therefore current therapeutic options are transfusion and injection of recombinant human EPO. This report shows that the cause of insufficient EPO production in AOP is elevated renal oxygen levels due to poor oxygen consumption by immature tubules. Neonatal mice with AOP showed low tubular transporter expression and elevated renal oxygen levels compared with those without AOP. Enhancing transporter expression in AOP mice induced renal hypoxia and EPO production. In preterm neonates, red blood cell counts, hemoglobin levels, and hematocrit levels correlated with tubular function, but not with serum creatinine, gestational age, or birth weight. Furthermore, pharmacological upregulation of hypoxia signaling ameliorated AOP in mice. These data suggest that tubular maturation with increased oxygen consumption is required for renal EPO production.

Journal

Scientific ReportsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off