Tuber Formation and Growth of in vitro Cultivated Transgenic Potato Plants Overproducing Phytochrome B

Tuber Formation and Growth of in vitro Cultivated Transgenic Potato Plants Overproducing... We studied the effect of the ectopic expression of the Arabidopsis PHYB gene, which encodes the phytochrome B (phyB) apoprotein, under the control of cauliflower mosaic virus 35S promoter on the photoperiodic response of tuberization and growth of potato (Solanum tuberosum L., cv. Désirée) transformed lines. Stem cuttings of transformed and control plants were cultured on Murashige and Skoog nutrient medium containing 5 or 8% sucrose in the phytotron chambers at 20°C under conditions of a long day (16 h), a short day (10 h), or in darkness. We showed that the overexpression of the PHYB gene enhanced the inhibitory effect of the long day on tuberization. In addition, tuber initiation in these transformed plants occurred at a higher sucrose concentration. The insertion of the PHYB gene decreased plant and tuber weights and shortened stems and internodes. Thus, we demonstrated the complex result of the PHYB gene insertion: it affected the photoperiodic response of tuberization, the control of tuber initiation by sucrose, and the growth of potato vegetative organs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Tuber Formation and Growth of in vitro Cultivated Transgenic Potato Plants Overproducing Phytochrome B

Loading next page...
 
/lp/springer_journal/tuber-formation-and-growth-of-in-vitro-cultivated-transgenic-potato-S1Fx4kLAws
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1016303807701
Publisher site
See Article on Publisher Site

Abstract

We studied the effect of the ectopic expression of the Arabidopsis PHYB gene, which encodes the phytochrome B (phyB) apoprotein, under the control of cauliflower mosaic virus 35S promoter on the photoperiodic response of tuberization and growth of potato (Solanum tuberosum L., cv. Désirée) transformed lines. Stem cuttings of transformed and control plants were cultured on Murashige and Skoog nutrient medium containing 5 or 8% sucrose in the phytotron chambers at 20°C under conditions of a long day (16 h), a short day (10 h), or in darkness. We showed that the overexpression of the PHYB gene enhanced the inhibitory effect of the long day on tuberization. In addition, tuber initiation in these transformed plants occurred at a higher sucrose concentration. The insertion of the PHYB gene decreased plant and tuber weights and shortened stems and internodes. Thus, we demonstrated the complex result of the PHYB gene insertion: it affected the photoperiodic response of tuberization, the control of tuber initiation by sucrose, and the growth of potato vegetative organs.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off