Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain

Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of... In the present study, surface ozone (O3), nitrogen oxides (NOx), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain

Loading next page...
 
/lp/springer_journal/tropospheric-ozone-enhancement-during-post-harvest-crop-residue-fires-mnc04lUf2Y
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2034-y
Publisher site
See Article on Publisher Site

Abstract

In the present study, surface ozone (O3), nitrogen oxides (NOx), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off