Trehalose-Induced Variation in Mechanical Properties of Vesicles in Aqueous Solution

Trehalose-Induced Variation in Mechanical Properties of Vesicles in Aqueous Solution The effect of the trehalose incorporation on the nanomechanical properties of dipalmitoylphosphatidylcholine vesicles was studied using atomic force microscope (AFM) on mica surface. The vesicles were prepared only with the variation in the trehalose concentration and adsorbed on the mica surface. After the morphology of the adsorbed vesicles was characterized, the behavior of an AFM tip into the vesicle was monitored using the plot of the tip displacement versus the tip deflection. It was observed that the breakthrough of the tip into the vesicles occurred two times. Each breakthrough represented each penetration of the tip into each layer. Force data prior to the first breakthrough fitted well with the Hertzian model to estimate Young’s modulus and bending modulus of the vesicles. It was found that the Young’s modulus and bending modulus decreased proportionally to the increase in the trehalose concentration up to 0.5 of trehalose to lipid. However, above 0.5, the moduli were a little varied with the increase. In the identical measurements at glucose, just a slight change in the moduli was observed with the increase in the glucose composition from 0 % glucose up to even 2:1 ratio of glucose:lipid. These results in the mechanical properties seem attributable to the osmotic and volumetric effects on the headgroup packing disruption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Trehalose-Induced Variation in Mechanical Properties of Vesicles in Aqueous Solution

Loading next page...
 
/lp/springer_journal/trehalose-induced-variation-in-mechanical-properties-of-vesicles-in-t7PgFRSwFi
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9827-4
Publisher site
See Article on Publisher Site

Abstract

The effect of the trehalose incorporation on the nanomechanical properties of dipalmitoylphosphatidylcholine vesicles was studied using atomic force microscope (AFM) on mica surface. The vesicles were prepared only with the variation in the trehalose concentration and adsorbed on the mica surface. After the morphology of the adsorbed vesicles was characterized, the behavior of an AFM tip into the vesicle was monitored using the plot of the tip displacement versus the tip deflection. It was observed that the breakthrough of the tip into the vesicles occurred two times. Each breakthrough represented each penetration of the tip into each layer. Force data prior to the first breakthrough fitted well with the Hertzian model to estimate Young’s modulus and bending modulus of the vesicles. It was found that the Young’s modulus and bending modulus decreased proportionally to the increase in the trehalose concentration up to 0.5 of trehalose to lipid. However, above 0.5, the moduli were a little varied with the increase. In the identical measurements at glucose, just a slight change in the moduli was observed with the increase in the glucose composition from 0 % glucose up to even 2:1 ratio of glucose:lipid. These results in the mechanical properties seem attributable to the osmotic and volumetric effects on the headgroup packing disruption.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off