Tree vegetation of the forest-tundra ecotone in the Western Sayan mountains and climatic trends

Tree vegetation of the forest-tundra ecotone in the Western Sayan mountains and climatic trends Parameters of reproduction of the Siberian stone pine (Pinus sibirica), including radial and apical tree increments, the age structure of stands, the amount of young growth, and its distribution along an altitudinal gradient, have been studied in the forest-tundra ecotone of the Western Sayan. The results show that, over the past 30 years, P. sibirica undergrowth has expanded to the mountain tundra belt, the apical and radial tree increments and stand density have increased, and the life form of many P. sibirica plants has changed from prostrate to erect (single-or multistemmed). These changes correlate with the dynamics of summer temperatures and monthly (in May and June) and annual precipitation. The rise of summer temperatures by 1°C promotes the expansion of P. sibirica undergrowth for approximately 150 m up the altitudinal gradient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Ecology Springer Journals

Tree vegetation of the forest-tundra ecotone in the Western Sayan mountains and climatic trends

Loading next page...
 
/lp/springer_journal/tree-vegetation-of-the-forest-tundra-ecotone-in-the-western-sayan-mizkkcgyAU
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Environment, general; Ecology
ISSN
1067-4136
eISSN
1608-3334
D.O.I.
10.1134/S1067413608010025
Publisher site
See Article on Publisher Site

Abstract

Parameters of reproduction of the Siberian stone pine (Pinus sibirica), including radial and apical tree increments, the age structure of stands, the amount of young growth, and its distribution along an altitudinal gradient, have been studied in the forest-tundra ecotone of the Western Sayan. The results show that, over the past 30 years, P. sibirica undergrowth has expanded to the mountain tundra belt, the apical and radial tree increments and stand density have increased, and the life form of many P. sibirica plants has changed from prostrate to erect (single-or multistemmed). These changes correlate with the dynamics of summer temperatures and monthly (in May and June) and annual precipitation. The rise of summer temperatures by 1°C promotes the expansion of P. sibirica undergrowth for approximately 150 m up the altitudinal gradient.

Journal

Russian Journal of EcologySpringer Journals

Published: Jan 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off