Tree pattern query minimization

Tree pattern query minimization Tree patterns form a natural basis to query tree-structured data such as XML and LDAP. To improve the efficiency of tree pattern matching, it is essential to quickly identify and eliminate redundant nodes in the pattern. In this paper, we study tree pattern minimization both in the absence and in the presence of integrity constraints (ICs) on the underlying tree-structured database. In the absence of ICs, we develop a polynomial-time query minimization algorithm called CIM, whose efficiency stems from two key properties: (i) a node cannot be redundant unless its children are; and (ii) the order of elimination of redundant nodes is immaterial. When ICs are considered for minimization, we develop a technique for query minimization based on three fundamental operations: augmentation (an adaptation of the well-known chase procedure), minimization (based on homomorphism techniques), and reduction. We show the surprising result that the algorithm, referred to as ACIM, obtained by first augmenting the tree pattern using ICs, and then applying CIM, always finds the unique minimal equivalent query. While ACIM is polynomial time, it can be expensive in practice because of its inherent non-locality. We then present a fast algorithm, CDM, that identifies and eliminates local redundancies due to ICs, based on propagating ”information labels” up the tree pattern. CDM can be applied prior to ACIM for improving the minimization efficiency. We complement our analytical results with an experimental study that shows the effectiveness of our tree pattern minimization techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Tree pattern query minimization

Loading next page...
 
/lp/springer_journal/tree-pattern-query-minimization-jKtukjN9SD
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-002-0076-7
Publisher site
See Article on Publisher Site

Abstract

Tree patterns form a natural basis to query tree-structured data such as XML and LDAP. To improve the efficiency of tree pattern matching, it is essential to quickly identify and eliminate redundant nodes in the pattern. In this paper, we study tree pattern minimization both in the absence and in the presence of integrity constraints (ICs) on the underlying tree-structured database. In the absence of ICs, we develop a polynomial-time query minimization algorithm called CIM, whose efficiency stems from two key properties: (i) a node cannot be redundant unless its children are; and (ii) the order of elimination of redundant nodes is immaterial. When ICs are considered for minimization, we develop a technique for query minimization based on three fundamental operations: augmentation (an adaptation of the well-known chase procedure), minimization (based on homomorphism techniques), and reduction. We show the surprising result that the algorithm, referred to as ACIM, obtained by first augmenting the tree pattern using ICs, and then applying CIM, always finds the unique minimal equivalent query. While ACIM is polynomial time, it can be expensive in practice because of its inherent non-locality. We then present a fast algorithm, CDM, that identifies and eliminates local redundancies due to ICs, based on propagating ”information labels” up the tree pattern. CDM can be applied prior to ACIM for improving the minimization efficiency. We complement our analytical results with an experimental study that shows the effectiveness of our tree pattern minimization techniques.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off