Tree-Based Credal Networks for Classification

Tree-Based Credal Networks for Classification Bayesian networks are models for uncertain reasoning which are achieving a growing importance also for the data mining task of classification. Credal networks extend Bayesian nets to sets of distributions, or credal sets. This paper extends a state-of-the-art Bayesian net for classification, called tree-augmented naive Bayes classifier, to credal sets originated from probability intervals. This extension is a basis to address the fundamental problem of prior ignorance about the distribution that generates the data, which is a commonplace in data mining applications. This issue is often neglected, but addressing it properly is a key to ultimately draw reliable conclusions from the inferred models. In this paper we formalize the new model, develop an exact linear-time classification algorithm, and evaluate the credal net-based classifier on a number of real data sets. The empirical analysis shows that the new classifier is good and reliable, and raises a problem of excessive caution that is discussed in the paper. Overall, given the favorable trade-off between expressiveness and efficient computation, the newly proposed classifier appears to be a good candidate for the wide-scale application of reliable classifiers based on credal networks, to real and complex tasks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Tree-Based Credal Networks for Classification

Loading next page...
 
/lp/springer_journal/tree-based-credal-networks-for-classification-WrEbfh0LUb
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1025822321743
Publisher site
See Article on Publisher Site

Abstract

Bayesian networks are models for uncertain reasoning which are achieving a growing importance also for the data mining task of classification. Credal networks extend Bayesian nets to sets of distributions, or credal sets. This paper extends a state-of-the-art Bayesian net for classification, called tree-augmented naive Bayes classifier, to credal sets originated from probability intervals. This extension is a basis to address the fundamental problem of prior ignorance about the distribution that generates the data, which is a commonplace in data mining applications. This issue is often neglected, but addressing it properly is a key to ultimately draw reliable conclusions from the inferred models. In this paper we formalize the new model, develop an exact linear-time classification algorithm, and evaluate the credal net-based classifier on a number of real data sets. The empirical analysis shows that the new classifier is good and reliable, and raises a problem of excessive caution that is discussed in the paper. Overall, given the favorable trade-off between expressiveness and efficient computation, the newly proposed classifier appears to be a good candidate for the wide-scale application of reliable classifiers based on credal networks, to real and complex tasks.

Journal

Reliable ComputingSpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off