Treatment of tannery effluent by passive uptake—parametric studies and kinetic modeling

Treatment of tannery effluent by passive uptake—parametric studies and kinetic modeling Galactomyces geotrichum was utilized as a potential biosorbent for the treatment of tannery effluent under controlled environmental conditions. Tannery effluent treatment was studied through parametric experiments to study the effect of effluent pH (3.0–10.0), initial COD (1100–4400 mg/L), and biosorbent dosage (0.3–3.0 g/L).The zeta potential of the biosorbent was determined and found to influence the optimal pH. Increase in effluent COD values resulted in decreased COD removal percentages which attributed to limited availability of surface active sites. The equation relating the COD removal efficiency and biosorbent dose was proposed. Two popular kinetic models, namely pseudo-second order and power function models, were employed to the experimental data. Pseudo-second order model proved to be a good fit with high values of regression coefficient (R 2 > 0.960). Potential application of a fungal biosorption process was explored and the optimal process parameters were identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Treatment of tannery effluent by passive uptake—parametric studies and kinetic modeling

Loading next page...
 
/lp/springer_journal/treatment-of-tannery-effluent-by-passive-uptake-parametric-studies-and-jvip8VRrkq
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9456-9
Publisher site
See Article on Publisher Site

Abstract

Galactomyces geotrichum was utilized as a potential biosorbent for the treatment of tannery effluent under controlled environmental conditions. Tannery effluent treatment was studied through parametric experiments to study the effect of effluent pH (3.0–10.0), initial COD (1100–4400 mg/L), and biosorbent dosage (0.3–3.0 g/L).The zeta potential of the biosorbent was determined and found to influence the optimal pH. Increase in effluent COD values resulted in decreased COD removal percentages which attributed to limited availability of surface active sites. The equation relating the COD removal efficiency and biosorbent dose was proposed. Two popular kinetic models, namely pseudo-second order and power function models, were employed to the experimental data. Pseudo-second order model proved to be a good fit with high values of regression coefficient (R 2 > 0.960). Potential application of a fungal biosorption process was explored and the optimal process parameters were identified.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off