Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study

Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study Fatty acids are transported in a multistep process from the plasma to the mitochondria, where they are oxidized in order to meet energy requirements of the myocardium. Some of those steps, mainly the crossing of the involved cells’ membranes are far from being understood. Here, by means of mathematical modeling we address the problem of the fatty acid transport from the microvascular compartment to the endothelium. Values of parameters that are incorporated in the model are deduced from relevant experimental work. Concentration profiles are established as solutions of diffusion–reaction equations both numerically and using an analytical asymptotic approximation. The analytical solution accurately determines the fatty acid flux for any set of parameter values in contrast to off-the-shelf numerical solvers that fail under quite a few circumstances due to the stiffness of the differential equation system. Sensitivity analysis indicates that in spite of few uncertain parameter values, most of our conclusions are expected to be valid throughout the physiological range of operation. We find that in order to have an adequate fatty acid uptake rate it is essential for the luminal endothelial membrane to have very fast fatty acid transporters and/or specific sites that interact with the albumin-fatty acids complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study

Loading next page...
 
/lp/springer_journal/transport-of-free-fatty-acids-from-plasma-to-the-endothelium-of-9JKoFEqkyu
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9795-8
Publisher site
See Article on Publisher Site

Abstract

Fatty acids are transported in a multistep process from the plasma to the mitochondria, where they are oxidized in order to meet energy requirements of the myocardium. Some of those steps, mainly the crossing of the involved cells’ membranes are far from being understood. Here, by means of mathematical modeling we address the problem of the fatty acid transport from the microvascular compartment to the endothelium. Values of parameters that are incorporated in the model are deduced from relevant experimental work. Concentration profiles are established as solutions of diffusion–reaction equations both numerically and using an analytical asymptotic approximation. The analytical solution accurately determines the fatty acid flux for any set of parameter values in contrast to off-the-shelf numerical solvers that fail under quite a few circumstances due to the stiffness of the differential equation system. Sensitivity analysis indicates that in spite of few uncertain parameter values, most of our conclusions are expected to be valid throughout the physiological range of operation. We find that in order to have an adequate fatty acid uptake rate it is essential for the luminal endothelial membrane to have very fast fatty acid transporters and/or specific sites that interact with the albumin-fatty acids complex.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 3, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off