Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells

Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as... Study of the physical and electrical properties of the Sr2Fe1.5Mo0.5 + Ce0.8Sm0.2O1.9 composite material and its electrochemical properties as an electrode in contact with lanthanum gallate based electrolyte based on in reducing media revealed an increase in the dilatometric curve slope at around 400°C. This corresponds to an increase in the thermal expansion coefficient from 12.8 × 10–6 to 19.3 × 10–6 °C–1. An analysis of electrochemical impedance spectra by the relaxation-time-distribution method demonstrated the electrode reaction is localized in the frequency range 500–0.01 Hz. The electrical conductivity of the material under study was found to be about 17 S cm–1 at 800°C in the atmosphere of humid hydrogen. The polarization resistance under the same conditions was about 0.15 Ω cm2. The dependence of the polarization resistance on the partial pressure of hydrogen is linear with a reaction order of about–0.4, whereas that on the partial pressure of water has the opposite slope with a reaction order of about 0.2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells

Loading next page...
 
/lp/springer_journal/transport-and-electrochemical-properties-of-sr2fe1-5mo0-5o6-ce0-8sm0-Ng2WpjwsBl
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217010074
Publisher site
See Article on Publisher Site

Abstract

Study of the physical and electrical properties of the Sr2Fe1.5Mo0.5 + Ce0.8Sm0.2O1.9 composite material and its electrochemical properties as an electrode in contact with lanthanum gallate based electrolyte based on in reducing media revealed an increase in the dilatometric curve slope at around 400°C. This corresponds to an increase in the thermal expansion coefficient from 12.8 × 10–6 to 19.3 × 10–6 °C–1. An analysis of electrochemical impedance spectra by the relaxation-time-distribution method demonstrated the electrode reaction is localized in the frequency range 500–0.01 Hz. The electrical conductivity of the material under study was found to be about 17 S cm–1 at 800°C in the atmosphere of humid hydrogen. The polarization resistance under the same conditions was about 0.15 Ω cm2. The dependence of the polarization resistance on the partial pressure of hydrogen is linear with a reaction order of about–0.4, whereas that on the partial pressure of water has the opposite slope with a reaction order of about 0.2.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off