Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications

Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications Transparent oxyfluoride nano-glass-ceramics (GCs) containing GdF3 nanocrystals undoped and doped with 0.5 Eu3+ (mol%) were obtained by a novel sol–gel method after sintering at temperatures such low as 550 °C. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) show the precipitation of GdF3 nanocrystals with size between 7 and 10 nm, depending on the crystalline phase (hexagonal or orthorhombic) and the heating time. Fourier transform infrared spectroscopy (FTIR) analysis allows following the system evolution during the heat treatment showing the decomposition of trifluoroacetic acid (TFA), used as fluorine precursor, together with the formation of fluoride lattice bonding. Energy dispersive X-ray (EDX) analysis confirms the incorporation of the RE ions in the fluoride nanocrystals in the GCs. The ions incorporation on the GdF3 crystals is also supported by optical characterisation. Photoluminescence measurements result in a well resolved structure together with a narrowing of the Eu3+ emission and excitation spectra in the GCs compared to the xerogel. Moreover, the asymmetry ratio between the electric dipole transition (5D0→7F2) to the magnetic dipole transition (5D0→7F1) is reduced in GCs, indicating that Eu3+ ions are incorporated in the GdF3 crystalline phases. Moreover, Gd3+→Eu3+ energy transfer with enhancement of the energy transfer efficiency was observed in the GCs, further supported by fluorescence decay curves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sol-Gel Science and Technology Springer Journals

Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications

Loading next page...
 
/lp/springer_journal/transparent-sio2-gdf3-sol-gel-nano-glass-ceramics-for-optical-I4Hks5Ssql
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Inorganic Chemistry; Optical and Electronic Materials; Nanotechnology
ISSN
0928-0707
eISSN
1573-4846
D.O.I.
10.1007/s10971-018-4693-z
Publisher site
See Article on Publisher Site

Abstract

Transparent oxyfluoride nano-glass-ceramics (GCs) containing GdF3 nanocrystals undoped and doped with 0.5 Eu3+ (mol%) were obtained by a novel sol–gel method after sintering at temperatures such low as 550 °C. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) show the precipitation of GdF3 nanocrystals with size between 7 and 10 nm, depending on the crystalline phase (hexagonal or orthorhombic) and the heating time. Fourier transform infrared spectroscopy (FTIR) analysis allows following the system evolution during the heat treatment showing the decomposition of trifluoroacetic acid (TFA), used as fluorine precursor, together with the formation of fluoride lattice bonding. Energy dispersive X-ray (EDX) analysis confirms the incorporation of the RE ions in the fluoride nanocrystals in the GCs. The ions incorporation on the GdF3 crystals is also supported by optical characterisation. Photoluminescence measurements result in a well resolved structure together with a narrowing of the Eu3+ emission and excitation spectra in the GCs compared to the xerogel. Moreover, the asymmetry ratio between the electric dipole transition (5D0→7F2) to the magnetic dipole transition (5D0→7F1) is reduced in GCs, indicating that Eu3+ ions are incorporated in the GdF3 crystalline phases. Moreover, Gd3+→Eu3+ energy transfer with enhancement of the energy transfer efficiency was observed in the GCs, further supported by fluorescence decay curves.

Journal

Journal of Sol-Gel Science and TechnologySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off