Translucent network design from a CapEx/OpEx perspective

Translucent network design from a CapEx/OpEx perspective Translucent wdm network design has been widely investigated during the last 10 years. Translucent networks stand halfway between opaque and transparent networks improving the signal budget while reducing the network cost. On one hand, opaque networks provide satisfying quality from source to destination by the use of electrical reg regeneration (Re-amplifying, Re-shaping, and Re-timing) at each network node. In addition to their high cost inherent to numerous 3R regenerations, opaque networks are also constrained by the bit-rate dependence of electrical components. Transparent networks, on the other hand, do not include any electrical regeneration; therefore, the signal quality is degraded due to the accumulation of linear and non-linear effects along the signal’s route. Translucent networks include electrical regeneration at some network nodes. Among the different possible strategies for translucent network design, sparse regeneration inserts regenerators whenever needed to help establish connection requests. In this context the objective of translucent network design is to judiciously choose the regeneration sites in order to guarantee a certain quality of transmission while minimizing the network cost. In this paper, we propose to solve the translucent network design problem by introducing a heuristic for routing, wavelength assignment, and regenerator placement. This heuristic, called COR2P (Cross-Optimization for RWA and Regenerator Placement) aims not only to minimize the number of required regenerators, but also to minimize the number of regeneration sites. In this perspective, we introduce an original cost function that contributes to the optimization of CapEx/OpEx expenditures in translucent network design. In fact, the CapEx-to-OpEx ratio strongly depends on the pricing and management strategy of the carrier. In this respect, COR2P is designed in a way that its parameters can be adjusted according to carriers’ strategies. In order to discuss its different features, we compare COR2P performance with two other algorithms proposed in the literature for translucent network design. Photonic Network Communications Springer Journals

Translucent network design from a CapEx/OpEx perspective

Loading next page...
Springer US
Copyright © 2011 by Springer Science+Business Media, LLC
Computer Science; Electrical Engineering; Computer Communication Networks; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial