Translocation of stream-dwelling salmonids in headwaters: insights from a 15-year reintroduction experience

Translocation of stream-dwelling salmonids in headwaters: insights from a 15-year reintroduction... Translocation programs are a common strategy to increase the number of viable populations of threatened freshwater fishes. Yet, only in a minority of cases the success or failure of translocations has been assessed through a quantitative analysis of demographic traits, compensatory responses, life-histories and population dynamics of the threatened species. A paradigmatic case a translocation program combining both management- and research-oriented activities is represented by the Marble Trout Conservation Program, which started in 1993 in the upper reaches of the Soca, Idirjca and Baca river basins (Slovenia) for the conservation of stream-dwelling marble trout Salmo marmoratus. In order to enhance the viability of the species, two new populations were created in 1996 by stocking 500 marble trout aged 1+ in previously fishless streams (Gorska and Zakojska) within the core habitat of the species. The new populations have been systematically monitored for 15 years by individually tagging and sampling marble trout. Our analyses show that deterministic extinction of marble trout populations are unlikely and that high-magnitude environmental stochasticity (i.e., severe floods) is the only main cause of local population extinction, despite the high resilience to flood-induced massive mortalities exhibited by marble trout through compensatory mechanisms (e.g., relaxation of density-dependent body growth and survival at low densities). Fishless headwaters, probably characterized by a history of recurrent severe floods, should not be considered as candidate sites for the creation of new populations. Fewer individuals than originally reintroduced (i.e., 500 fish aged 1+ in each stream) might be sufficient to establish viable populations, since compensatory mechanisms are likely to regulate population size around stream carrying capacity in a few years. Besides enhancing the species viability, translocation programs can provide an excellent framework for the estimation of ecological traits (e.g., life-histories, demography, population dynamics etc.), identify potential vulnerabilities and thus guide well-formed management actions for the threatened species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Translocation of stream-dwelling salmonids in headwaters: insights from a 15-year reintroduction experience

Loading next page...
 
/lp/springer_journal/translocation-of-stream-dwelling-salmonids-in-headwaters-insights-from-y0LErvNy00
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-011-9235-5
Publisher site
See Article on Publisher Site

Abstract

Translocation programs are a common strategy to increase the number of viable populations of threatened freshwater fishes. Yet, only in a minority of cases the success or failure of translocations has been assessed through a quantitative analysis of demographic traits, compensatory responses, life-histories and population dynamics of the threatened species. A paradigmatic case a translocation program combining both management- and research-oriented activities is represented by the Marble Trout Conservation Program, which started in 1993 in the upper reaches of the Soca, Idirjca and Baca river basins (Slovenia) for the conservation of stream-dwelling marble trout Salmo marmoratus. In order to enhance the viability of the species, two new populations were created in 1996 by stocking 500 marble trout aged 1+ in previously fishless streams (Gorska and Zakojska) within the core habitat of the species. The new populations have been systematically monitored for 15 years by individually tagging and sampling marble trout. Our analyses show that deterministic extinction of marble trout populations are unlikely and that high-magnitude environmental stochasticity (i.e., severe floods) is the only main cause of local population extinction, despite the high resilience to flood-induced massive mortalities exhibited by marble trout through compensatory mechanisms (e.g., relaxation of density-dependent body growth and survival at low densities). Fishless headwaters, probably characterized by a history of recurrent severe floods, should not be considered as candidate sites for the creation of new populations. Fewer individuals than originally reintroduced (i.e., 500 fish aged 1+ in each stream) might be sufficient to establish viable populations, since compensatory mechanisms are likely to regulate population size around stream carrying capacity in a few years. Besides enhancing the species viability, translocation programs can provide an excellent framework for the estimation of ecological traits (e.g., life-histories, demography, population dynamics etc.), identify potential vulnerabilities and thus guide well-formed management actions for the threatened species.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Sep 15, 2011

References

  • Stocking experiment with 0+ and 1+ trout parr, Salmo trutta L., of wild and hatchery origin: 1. Post-stocking mortality and smolt yield
    Berg, S; Jørgensen, J

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off