Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide

Transition metal substituted polyoxometalates and their application in the direct hydroxylation... A series of transition metal substituted polyoxometalates with a Keggin structure were prepared and utilized for the hydroxylation of benzene to phenol. Among the compounds tested, [(CH3)4N]4PMo11VO40 exhibits the highest phenol yield (13.0%) and selectivity (90.6%) in acetic acid/acetonitrile. Vanadium peroxo is the active site of the reaction, and ammonium also plays an important role. The influence of various reaction parameters, such as solvent, reaction time, reaction temperature, and amount of hydrogen peroxide used were investigated to obtain the optimal reaction conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide

Loading next page...
 
/lp/springer_journal/transition-metal-substituted-polyoxometalates-and-their-application-in-kB8YQ6zQSN
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0208-4
Publisher site
See Article on Publisher Site

Abstract

A series of transition metal substituted polyoxometalates with a Keggin structure were prepared and utilized for the hydroxylation of benzene to phenol. Among the compounds tested, [(CH3)4N]4PMo11VO40 exhibits the highest phenol yield (13.0%) and selectivity (90.6%) in acetic acid/acetonitrile. Vanadium peroxo is the active site of the reaction, and ammonium also plays an important role. The influence of various reaction parameters, such as solvent, reaction time, reaction temperature, and amount of hydrogen peroxide used were investigated to obtain the optimal reaction conditions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off