Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide

Transition metal substituted polyoxometalates and their application in the direct hydroxylation... A series of transition metal substituted polyoxometalates with a Keggin structure were prepared and utilized for the hydroxylation of benzene to phenol. Among the compounds tested, [(CH3)4N]4PMo11VO40 exhibits the highest phenol yield (13.0%) and selectivity (90.6%) in acetic acid/acetonitrile. Vanadium peroxo is the active site of the reaction, and ammonium also plays an important role. The influence of various reaction parameters, such as solvent, reaction time, reaction temperature, and amount of hydrogen peroxide used were investigated to obtain the optimal reaction conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide

Loading next page...
 
/lp/springer_journal/transition-metal-substituted-polyoxometalates-and-their-application-in-kB8YQ6zQSN
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0208-4
Publisher site
See Article on Publisher Site

Abstract

A series of transition metal substituted polyoxometalates with a Keggin structure were prepared and utilized for the hydroxylation of benzene to phenol. Among the compounds tested, [(CH3)4N]4PMo11VO40 exhibits the highest phenol yield (13.0%) and selectivity (90.6%) in acetic acid/acetonitrile. Vanadium peroxo is the active site of the reaction, and ammonium also plays an important role. The influence of various reaction parameters, such as solvent, reaction time, reaction temperature, and amount of hydrogen peroxide used were investigated to obtain the optimal reaction conditions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off