Transition layer thickness in a fluid-porous medium of multi-sized spherical beads

Transition layer thickness in a fluid-porous medium of multi-sized spherical beads Momentum and mass transfer at fluid–porous interfaces occur in many technical and natural applications. The vertical extend below a fluid–porous interface within which the free fluid velocity reduces to a constant Darcy velocity in the porous medium is known as Brinkman layer. Recently, the Brinkman layer thickness (δ) has been measured for a porous bed of mono-sized spherical beads, and was found to be in the order of the particle diameter (d). In this study, we investigate a porous medium made of multi-sized spherical beads. The measured averaged interfacial velocity field clearly indicated that, in the case of multi-sized beads, δ is in the order of a characteristic diameter given by $$(\sum_{i} \frac{x_i}{d_i})/(\sum_{i} \frac{x_i}{d_i^2})$$ with x i and d i being the weight fraction and diameter of the component i in the mixture. Experiments in Fluids Springer Journals

Transition layer thickness in a fluid-porous medium of multi-sized spherical beads

Loading next page...
Copyright © 2008 by The Author(s)
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial