Transients of delayed fluorescence induction signal and photosynthetic antennas: A possible relationship. Mathematical modeling approach

Transients of delayed fluorescence induction signal and photosynthetic antennas: A possible... A mathematical model was developed for resolved temporal transients of experimentally recorded delayed fluorescence (DF) induction signal. During an intermittent light regime, antennas of the photosynthetic apparatus were treated as targets, repeatedly hit by potentially absorbable photons within a series of consecutive light flashes. Formulas were derived for the number of antennas, cumulatively hit by a specific number of photons, as a function of the flash serial number (time). Model parameters included number of absorbable photons in one flash, antenna sizes, and their number. A series of induction curves were analyzed, obtained from a Zea mays leaf segment and differing in the previous dark period (t d). Each curve, consisting of the two most prominent DF transients (C and D), was fitted with several model types, differing in the number of absorbed photons. For both transients, the best fitting result was achieved when DF induction was linked to the second absorbed photon. As expected, model parameters related to antenna sizes showed weaker dependence on t d than those referring to antenna number. With restrictions applied to this model, the two DF induction transients may be related to two classes of photosynthetic antennas. Their different sizes may have a predominant influence on the efficiency of photon absorption and possibly time-dependent appearance of DF transients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Transients of delayed fluorescence induction signal and photosynthetic antennas: A possible relationship. Mathematical modeling approach

Loading next page...
 
/lp/springer_journal/transients-of-delayed-fluorescence-induction-signal-and-photosynthetic-r2UPFhcT05
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706030010
Publisher site
See Article on Publisher Site

Abstract

A mathematical model was developed for resolved temporal transients of experimentally recorded delayed fluorescence (DF) induction signal. During an intermittent light regime, antennas of the photosynthetic apparatus were treated as targets, repeatedly hit by potentially absorbable photons within a series of consecutive light flashes. Formulas were derived for the number of antennas, cumulatively hit by a specific number of photons, as a function of the flash serial number (time). Model parameters included number of absorbable photons in one flash, antenna sizes, and their number. A series of induction curves were analyzed, obtained from a Zea mays leaf segment and differing in the previous dark period (t d). Each curve, consisting of the two most prominent DF transients (C and D), was fitted with several model types, differing in the number of absorbed photons. For both transients, the best fitting result was achieved when DF induction was linked to the second absorbed photon. As expected, model parameters related to antenna sizes showed weaker dependence on t d than those referring to antenna number. With restrictions applied to this model, the two DF induction transients may be related to two classes of photosynthetic antennas. Their different sizes may have a predominant influence on the efficiency of photon absorption and possibly time-dependent appearance of DF transients.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 15, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off