Transient temperature probe measurements in a Mach 4 nitrogen jet

Transient temperature probe measurements in a Mach 4 nitrogen jet Stagnation temperature measurements have been obtained in a Mach 4 free jet of nitrogen using a technique based on transient thin film heat flux probe measurements. The uncertainty in the stagnation temperature measurements depends on the probe location within the jet but is typically around ±5 K at the centre of the jet. The thin film heat flux probe technique also provides a measurement of the heat transfer coefficient of the thin film probes with an uncertainty of around ±4% at the centre of the jet. Pitot pressure measurements were also obtained within the jet. Analysis of the heat transfer coefficient results yields the Mach number and velocity profiles which are compared with results from the pitot probe measurements. Jet velocities identified using the thin film probe and the pitot probe techniques produce results with uncertainties of less than ±2% at the centre of the jet. Measurements of RMS stagnation temperature fluctuations indicate values of around 3 K at the centre of the jet to more than 10 K in the shear layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Transient temperature probe measurements in a Mach 4 nitrogen jet

Loading next page...
 
/lp/springer_journal/transient-temperature-probe-measurements-in-a-mach-4-nitrogen-jet-tw7BH7DbHh
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0793-3
Publisher site
See Article on Publisher Site

Abstract

Stagnation temperature measurements have been obtained in a Mach 4 free jet of nitrogen using a technique based on transient thin film heat flux probe measurements. The uncertainty in the stagnation temperature measurements depends on the probe location within the jet but is typically around ±5 K at the centre of the jet. The thin film heat flux probe technique also provides a measurement of the heat transfer coefficient of the thin film probes with an uncertainty of around ±4% at the centre of the jet. Pitot pressure measurements were also obtained within the jet. Analysis of the heat transfer coefficient results yields the Mach number and velocity profiles which are compared with results from the pitot probe measurements. Jet velocities identified using the thin film probe and the pitot probe techniques produce results with uncertainties of less than ±2% at the centre of the jet. Measurements of RMS stagnation temperature fluctuations indicate values of around 3 K at the centre of the jet to more than 10 K in the shear layer.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 15, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off