Transient and steady state behaviors of rapid granular shear flows

Transient and steady state behaviors of rapid granular shear flows Rapid granular shear flow is a classical example in granular materials which exhibits fluid-like behavior solely or fluid-like and solid-like behaviors simultaneously. We have performed experiments on annular granular shear flows using monodisperse steel spheres with 2-mm and 3-mm diameters. We discuss some transient (static failure of material due to shear) and steady-state (completely sheared and partially sheared flows) features of rapid granular flows. Our results map out the boundary between overall compaction and dilation that characterizes multiphase behavior of the system. Dimensionless stresses rise as more material is loaded into the system. On the other hand, increasing the compressive force or shear rate is equal to easing the process of shearing by decreasing the ratio of shear to normal stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Transient and steady state behaviors of rapid granular shear flows

Loading next page...
 
/lp/springer_journal/transient-and-steady-state-behaviors-of-rapid-granular-shear-flows-EcTkj0wxP6
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0984-6
Publisher site
See Article on Publisher Site

Abstract

Rapid granular shear flow is a classical example in granular materials which exhibits fluid-like behavior solely or fluid-like and solid-like behaviors simultaneously. We have performed experiments on annular granular shear flows using monodisperse steel spheres with 2-mm and 3-mm diameters. We discuss some transient (static failure of material due to shear) and steady-state (completely sheared and partially sheared flows) features of rapid granular flows. Our results map out the boundary between overall compaction and dilation that characterizes multiphase behavior of the system. Dimensionless stresses rise as more material is loaded into the system. On the other hand, increasing the compressive force or shear rate is equal to easing the process of shearing by decreasing the ratio of shear to normal stress.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 9, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off