Transient and stable expression of the HCV envelope glycoproteins in cell lines and primary hepatocytes transduced with a recombinant baculovirus

Transient and stable expression of the HCV envelope glycoproteins in cell lines and primary... A recombinant baculovirus, RecBV-E, encoding the hepatitis C virus (HCV) envelope proteins, E1 and E2, controlled by the cytomegalovirus promoter was constructed. RecBVs can infect mammalian cells, but fail to express proteins or replicate because the viral DNA promoters are not recognised. The RecBV-E transduced 86% of Huh7 cells and 22% of primary marmoset hepatocytes compared with 35% and 0.4%, respectively, after DNA transfection. Several stable cell lines were generated that constitutively expressed E1/E2 in every cell. No evidence of E1/E2-related apoptosis was noted, and the doubling times of cells were similar to that of the parental cells. A proportion of the E1/E2 was expressed on the surface of the stable cells as determined by flow cytometry and was detected by a conformation-dependent monoclonal antibody. It is likely that the continued expression of E1/E2 in the stable cells resulted from integration of the RecBV DNA. Infection of Huh7 cells, in the absence of G418 selection, failed to result in expression of the foreign gene (in this case, eGFP) beyond 14–18 days. RecBVs that express HCV genes from a CMV promoter represent an effective means by which to transduce primary hepatocytes for expression and replication studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Transient and stable expression of the HCV envelope glycoproteins in cell lines and primary hepatocytes transduced with a recombinant baculovirus

Loading next page...
 
/lp/springer_journal/transient-and-stable-expression-of-the-hcv-envelope-glycoproteins-in-wrlYnuszG9
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-006-0845-5
Publisher site
See Article on Publisher Site

Abstract

A recombinant baculovirus, RecBV-E, encoding the hepatitis C virus (HCV) envelope proteins, E1 and E2, controlled by the cytomegalovirus promoter was constructed. RecBVs can infect mammalian cells, but fail to express proteins or replicate because the viral DNA promoters are not recognised. The RecBV-E transduced 86% of Huh7 cells and 22% of primary marmoset hepatocytes compared with 35% and 0.4%, respectively, after DNA transfection. Several stable cell lines were generated that constitutively expressed E1/E2 in every cell. No evidence of E1/E2-related apoptosis was noted, and the doubling times of cells were similar to that of the parental cells. A proportion of the E1/E2 was expressed on the surface of the stable cells as determined by flow cytometry and was detected by a conformation-dependent monoclonal antibody. It is likely that the continued expression of E1/E2 in the stable cells resulted from integration of the RecBV DNA. Infection of Huh7 cells, in the absence of G418 selection, failed to result in expression of the foreign gene (in this case, eGFP) beyond 14–18 days. RecBVs that express HCV genes from a CMV promoter represent an effective means by which to transduce primary hepatocytes for expression and replication studies.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off