Transgenic fish

Transgenic fish Transgenic fish are produced by the artificial transfer of rearranged genes into newly fertilized eggs. Currently microinjection is the preferred method, although the integration rates of transgenes are generally low. A number of fusion genes, containing retrovirus sequences which direct integration, have been developed to enhance integration of transgenes. Mass gene transfer methods are also being developed. These include lipofection, particle bombardment, and electroporation of embryos and sperm cells. These methods are potentially useful for marine organisms such as crustaceans and molluscs as well as fish. In contrast to microinjection, which treats single cells individually, these methods can transfer genes into a large number of eggs at once. There is some evidence to indicate successful integration and expression of transgenes transferred by the electroporation of embryos and sperm cells. Germline transmission of transgenes has been observed through mating studies, and in some cases the progeny express the new phenotype consistently. However, germline transmission does not necessarily confirm stable integration of the transgene. There is evidence that transgenes may exist extrachromosomally. Transgenic fish are viewed as a useful model for the study of complex biological phenomena such as growth and differentiation, and as a fast track to the production of broodstock for the aquaculture industry. Current research focuses on the elucidation of the mechanisms controlling the regulation of gene expression. The use of transgenic fish for the isolation of developmental genes has just begun. Applications of transgenesis to broodstock development have been focused on the development of fish with accelerated growth, tolerance to low temperature, and disease resistance. However, before the release of transgenic fish into the environment, the possible impact on the environment must be assessed. There must be safeguards to protect the genetic diversities of the natural populations, and to conserve the natural habitats http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Loading next page...
 
/lp/springer_journal/transgenic-fish-lMmv0I6xuS
Publisher
Springer Journals
Copyright
Copyright © 1997 by Chapman and Hall
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1018452214763
Publisher site
See Article on Publisher Site

Abstract

Transgenic fish are produced by the artificial transfer of rearranged genes into newly fertilized eggs. Currently microinjection is the preferred method, although the integration rates of transgenes are generally low. A number of fusion genes, containing retrovirus sequences which direct integration, have been developed to enhance integration of transgenes. Mass gene transfer methods are also being developed. These include lipofection, particle bombardment, and electroporation of embryos and sperm cells. These methods are potentially useful for marine organisms such as crustaceans and molluscs as well as fish. In contrast to microinjection, which treats single cells individually, these methods can transfer genes into a large number of eggs at once. There is some evidence to indicate successful integration and expression of transgenes transferred by the electroporation of embryos and sperm cells. Germline transmission of transgenes has been observed through mating studies, and in some cases the progeny express the new phenotype consistently. However, germline transmission does not necessarily confirm stable integration of the transgene. There is evidence that transgenes may exist extrachromosomally. Transgenic fish are viewed as a useful model for the study of complex biological phenomena such as growth and differentiation, and as a fast track to the production of broodstock for the aquaculture industry. Current research focuses on the elucidation of the mechanisms controlling the regulation of gene expression. The use of transgenic fish for the isolation of developmental genes has just begun. Applications of transgenesis to broodstock development have been focused on the development of fish with accelerated growth, tolerance to low temperature, and disease resistance. However, before the release of transgenic fish into the environment, the possible impact on the environment must be assessed. There must be safeguards to protect the genetic diversities of the natural populations, and to conserve the natural habitats

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 14, 2004

References

  • The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos
    Amsterdam, A.; Lin, S.; Hopkins, N.
  • Knowledge and research prospects in marine mollusc and crustacean immunology
    Bachere, E.; Mialhe, E.; Noel, D.; Boulo, V.; Morvan, A.; Rodriguez, J.
  • Peptides from frog skin
    Bevin, C.L.; Zasloff, M.
  • Body composition of transgenic common carp, Cyprinus carpio, containing rainbow trout growth hormone gene
    Chatakondi, N.; Lovell, R.T.; Duncan, P.L.; Hayat, M.; Chen, T.T.; Powers, D.A.; Weete, J.D.; Cummins, K.; Dunham, R.A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off