Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved

Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the... To analyse experimentally the correlation between transgene silencing and the presence of an inverted repeat in transgenic Arabidopsis thaliana plants, expression of the β-glucuronidase (gus) gene was studied when present as a convergently transcribed inverted repeat or as a single copy in otherwise isogenic lines. In transformants containing two invertedly repeated gus genes separated by a 732 bp palindromic sequence, gus expression was low, as exemplified by the expression levels in the parental line KH15. The parental KH15 locus could induce efficiently in trans silencing of gus copies at allelic and non-allelic positions. In transformants containing two invertedly repeated gus genes separated by a 826 bp non-repetitive spacer region, gus expression was high or intermediate, especially in hemizygous state and at late developmental stages, as demonstrated in detail for line KHsb67. Removal of one of the gus copies by Cre recombinase resulted in all cases in constitutively high gus expression in hemizygous as well as in homozygous state. The derived deletion lines could no longer induce in trans silencing of homologous gus copies. The results show that convergent transcription of transgenes in an inverted repeat is an important parameter to trigger their silencing and that co-transformation of two T-DNAs with identical transgenes can be used to obtain inverted repeats and targeted co-suppression of the homologous endogenes. Moreover, the data suggest that the spacer region in between the inverted genes plays a role in the efficiency of initiating and maintaining silencing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved

Loading next page...
 
/lp/springer_journal/transgene-silencing-of-invertedly-repeated-transgenes-is-released-upon-5A1BBb9IBy
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010614522706
Publisher site
See Article on Publisher Site

Abstract

To analyse experimentally the correlation between transgene silencing and the presence of an inverted repeat in transgenic Arabidopsis thaliana plants, expression of the β-glucuronidase (gus) gene was studied when present as a convergently transcribed inverted repeat or as a single copy in otherwise isogenic lines. In transformants containing two invertedly repeated gus genes separated by a 732 bp palindromic sequence, gus expression was low, as exemplified by the expression levels in the parental line KH15. The parental KH15 locus could induce efficiently in trans silencing of gus copies at allelic and non-allelic positions. In transformants containing two invertedly repeated gus genes separated by a 826 bp non-repetitive spacer region, gus expression was high or intermediate, especially in hemizygous state and at late developmental stages, as demonstrated in detail for line KHsb67. Removal of one of the gus copies by Cre recombinase resulted in all cases in constitutively high gus expression in hemizygous as well as in homozygous state. The derived deletion lines could no longer induce in trans silencing of homologous gus copies. The results show that convergent transcription of transgenes in an inverted repeat is an important parameter to trigger their silencing and that co-transformation of two T-DNAs with identical transgenes can be used to obtain inverted repeats and targeted co-suppression of the homologous endogenes. Moreover, the data suggest that the spacer region in between the inverted genes plays a role in the efficiency of initiating and maintaining silencing.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off