Transgene excision from wheat chromosomes by phage phiC31 integrase

Transgene excision from wheat chromosomes by phage phiC31 integrase The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transgene excision from wheat chromosomes by phage phiC31 integrase

Loading next page...
 
/lp/springer_journal/transgene-excision-from-wheat-chromosomes-by-phage-phic31-integrase-vgqfyig9mP
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9606-7
Publisher site
See Article on Publisher Site

Abstract

The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 2, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off