Transformation of sliding motion to rolling during spheres collision

Transformation of sliding motion to rolling during spheres collision In this research, we have investigated the three-dimensional elastic collision of two balls, based on friction in the tangential plane. Our aim is to offer analytical closed form relations for post collision parameters such as linear and angular velocities, collision time and tangential and normal impulse in three dimensions. To simplify the problem, stick regime is not considered. In other words, balls have a low tangential coefficient of restitution. Sliding, sliding then rolling, and rolling at the beginning of contact are three cases that can occur during impact which have been considered in our research. The normal interaction force is described by the Hertz contact force and dimensionless analysis is used for investigating normal interaction force; furthermore, Coulomb friction is considered during sliding. Experimental data for collisions show when sliding exists through the impact, tangential impulses can be taken as frictional impulses using the Coulomb law if the dynamic regime is not stick regime. To identify transformation of sliding motion to rolling or sticking during the impact process, linear and trigonometric functions are considered as an approximation for the normal interaction force. Afterwards, we have obtained the condition for the possibility of this transformation; moreover, we can estimate the duration of sliding and rolling or sticking. We have obtained an analytical solution for maximum force and deformation, collision time, impulses and post-collision linear and angular velocities in three dimensions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Matter Springer Journals

Transformation of sliding motion to rolling during spheres collision

Loading next page...
 
/lp/springer_journal/transformation-of-sliding-motion-to-rolling-during-spheres-collision-J6WLgzBffu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Soft and Granular Matter, Complex Fluids and Microfluidics; Engineering Fluid Dynamics; Materials Science, general; Geoengineering, Foundations, Hydraulics; Industrial Chemistry/Chemical Engineering; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
1434-5021
eISSN
1434-7636
D.O.I.
10.1007/s10035-017-0755-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial