Transformation of LRP gene into Brassica napus mediated by agrobacterium tumefaciens to enhance lysine content in seeds

Transformation of LRP gene into Brassica napus mediated by agrobacterium tumefaciens to enhance... Lysine rich protein (LRP) gene derived from the seed of Psophocarpus tetragonolobus was transformed into Brassica napus, employing cotyledon petiole as explants and by using the Agrobacterium tumefaciens strain LBA4404. Transformation efficiency was found to be closely related with phytohormone concentration, infection incubation, and co-cultured time. A medium containing 4 mg/l 6-benzyladenine (6-BA) and 0.3 mg/1 naphthalene acetic acid (NAA) was used for plant regeneration. With infection incubation of A. tumefaciens (OD600 = 0.4) for 20 min and co-culture of infected cotyledon petiole for 3 days, the highest transformation efficiency of 8.5% was obtained. To confirm LRP gene expression, PCR and Southern blot analysis were performed on leaf-isolated DNA from regenerated plants resistant to kanamycin. All transgenic plants of the generation T0 formed fertile seeds, which were sowed for the inheritance study of generational T1 and amino acid analysis. It was found that the lysine content of seeds from T1 generation increased by 16.7% compared with non-transgenic lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Transformation of LRP gene into Brassica napus mediated by agrobacterium tumefaciens to enhance lysine content in seeds

Loading next page...
 
/lp/springer_journal/transformation-of-lrp-gene-into-brassica-napus-mediated-by-kJ2qX0L9mA
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795411120167
Publisher site
See Article on Publisher Site

Abstract

Lysine rich protein (LRP) gene derived from the seed of Psophocarpus tetragonolobus was transformed into Brassica napus, employing cotyledon petiole as explants and by using the Agrobacterium tumefaciens strain LBA4404. Transformation efficiency was found to be closely related with phytohormone concentration, infection incubation, and co-cultured time. A medium containing 4 mg/l 6-benzyladenine (6-BA) and 0.3 mg/1 naphthalene acetic acid (NAA) was used for plant regeneration. With infection incubation of A. tumefaciens (OD600 = 0.4) for 20 min and co-culture of infected cotyledon petiole for 3 days, the highest transformation efficiency of 8.5% was obtained. To confirm LRP gene expression, PCR and Southern blot analysis were performed on leaf-isolated DNA from regenerated plants resistant to kanamycin. All transgenic plants of the generation T0 formed fertile seeds, which were sowed for the inheritance study of generational T1 and amino acid analysis. It was found that the lysine content of seeds from T1 generation increased by 16.7% compared with non-transgenic lines.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 8, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off