Transformation of lignin from bioethanol production for phenol substitution in resins

Transformation of lignin from bioethanol production for phenol substitution in resins The main objective of biorefineries is the efficient conversion of lignocellulosic materials into valuable products. Lignin, a major abundant polymer not sufficiently exploited, is considered to be a promising substitute of phenol in phenol–formaldehyde resin synthesis. In this study, a lignin sample from a bioethanol production plant was modified under different experimental conditions by a depolymerisation treatment. The modification was intended to enhance the reactivity of lignin by increasing its functionality. The structural changes were studied with several characterisation techniques including size exclusion chromatography, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The lignin reactivity towards formaldehyde was determined with a formaldehyde reactivity test. From the characterisation results of the reacted lignins, it was concluded that increasing the severity of the depolymerisation treatment (i.e. higher temperature, reaction time and catalyst content) resulted in an increase in active functional groups. Consequently, lignins depolymerised at more severe conditions were more reactive towards formaldehyde reaction. Due to their improved reactivity, the treated lignins could be successfully used as substitutes of phenol, converting them into a highly value-added product. An estimation of the cost of the proposed process is provided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wood Science and Technology Springer Journals

Transformation of lignin from bioethanol production for phenol substitution in resins

Loading next page...
 
/lp/springer_journal/transformation-of-lignin-from-bioethanol-production-for-phenol-U7aY8Kcr0B
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment
ISSN
0043-7719
eISSN
1432-5225
D.O.I.
10.1007/s00226-017-0911-z
Publisher site
See Article on Publisher Site

Abstract

The main objective of biorefineries is the efficient conversion of lignocellulosic materials into valuable products. Lignin, a major abundant polymer not sufficiently exploited, is considered to be a promising substitute of phenol in phenol–formaldehyde resin synthesis. In this study, a lignin sample from a bioethanol production plant was modified under different experimental conditions by a depolymerisation treatment. The modification was intended to enhance the reactivity of lignin by increasing its functionality. The structural changes were studied with several characterisation techniques including size exclusion chromatography, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The lignin reactivity towards formaldehyde was determined with a formaldehyde reactivity test. From the characterisation results of the reacted lignins, it was concluded that increasing the severity of the depolymerisation treatment (i.e. higher temperature, reaction time and catalyst content) resulted in an increase in active functional groups. Consequently, lignins depolymerised at more severe conditions were more reactive towards formaldehyde reaction. Due to their improved reactivity, the treated lignins could be successfully used as substitutes of phenol, converting them into a highly value-added product. An estimation of the cost of the proposed process is provided.

Journal

Wood Science and TechnologySpringer Journals

Published: Apr 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off