Transcripts of maize RbcS genes accumulate differentially in C3 and C4 tissues

Transcripts of maize RbcS genes accumulate differentially in C3 and C4 tissues RbcS genes exist as multigene families in most plant species examined. In this paper, we report an investigation into the expression patterns of two maize RbcS genes, designated in this report as RbcS1and RbcS2. We present the sequence of RbcS2 and show that the structure of the gene has several features in common with other monocot RbcS genes. To determine whether RbcS1 and RbcS2 fulfil different functional roles with respect to the C3 and C4 carbon fixation pathways, we have investigated the expression patterns of the two genes in different maize tissue types. Transcripts of both genes are found at high levels specifically in bundle-sheath cells of maize seedling leaves, indicating that both genes are expressed in the C4-type pattern. However, we show that RbcS1 transcripts are relatively more abundant than RbcS2 transcripts in C3 tissues such as husk leaves. These results are discussed with respect to the evolution of C4 carbon fixation and the mechanisms required for the cell-specific expression of RbcS genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcripts of maize RbcS genes accumulate differentially in C3 and C4 tissues

Loading next page...
 
/lp/springer_journal/transcripts-of-maize-rbcs-genes-accumulate-differentially-in-c3-and-c4-rutHRB1qXz
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005947306667
Publisher site
See Article on Publisher Site

Abstract

RbcS genes exist as multigene families in most plant species examined. In this paper, we report an investigation into the expression patterns of two maize RbcS genes, designated in this report as RbcS1and RbcS2. We present the sequence of RbcS2 and show that the structure of the gene has several features in common with other monocot RbcS genes. To determine whether RbcS1 and RbcS2 fulfil different functional roles with respect to the C3 and C4 carbon fixation pathways, we have investigated the expression patterns of the two genes in different maize tissue types. Transcripts of both genes are found at high levels specifically in bundle-sheath cells of maize seedling leaves, indicating that both genes are expressed in the C4-type pattern. However, we show that RbcS1 transcripts are relatively more abundant than RbcS2 transcripts in C3 tissues such as husk leaves. These results are discussed with respect to the evolution of C4 carbon fixation and the mechanisms required for the cell-specific expression of RbcS genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off