Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete

Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid... Diploid gametes are usually applied to produce triploids of Populus [originating from first-division restitution (FDR), second-division restitution (SDR), and postmeiotic restitution (PMR) 2n eggs]. Three types of 2n gametes transmitted different parental heterozygosities in Populus. Failed spindle formation and no chromosomal separation to opposite poles during meiosis I mean that FDR 2n gametes carry nonsister chromatids that are potentially heterozygous. By contrast, SDR 2n gametes result from failed sister chromatid separation in meiosis II, and therefore, they carry sister chromatid that are potentially homozygous. Completely homozygous 2n gametes can arise from the PMR mechanism. The alteration of gene expression resulting from allopolyploidization is a prominent feature in plants. We compared gene expression in the full-sib progeny of three allotriploid Populus populations (triploid-F, triploid-S, and triploid-P) with that in its parent species, and their full-sib diploid F1 hybrid. Genome-wide expression level dominance was biased toward the maternal in the diploid F1 hybrid and three allotriploid populations, whereas our data indicated important, but different, effects of the transmission of different heterozygosity by 2n female gametes in the expression patterns of allopolyploids. Because of the higher level of heterozygosity, the triploids had higher rates of non-additive and transgressive expression patterns in the triploid-F than in triploid-S and triploid-P. Compared with diploid F1, about 30-fold more genes (251) were differently expressed in the triploid-F than in the triploid-S (9) and triploid-P (8), respectively. These findings indicate that hybridization and polyploidization have immediate and distinct effects on the large-scale patterns of gene expression, and different effects on the transmission of heterozygosity by three 2n female gametes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete

Loading next page...
 
/lp/springer_journal/transcriptomic-changes-following-synthesis-of-a-populus-full-sib-CvmHJLNn0U
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0384-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial