Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic capacity and efficiency in biomass accumulation in sugarcane

Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic... Sugarcane is among the most efficient crops in converting solar energy into chemical energy. However, due to its complex genome structure and inheritance, the genetic and molecular basis of biomass yield in sugarcane is still largely unknown. We created an F2 segregating population by crossing S. officinarum and S. spontaneum and evaluated the biomass yield of the F2 individuals. The F2 individuals exhibited clear transgressive segregation in biomass yield. We sequenced transcriptomes of source and sink tissues from 12 selected extreme segregants to explore the molecular basis of high biomass yield for future breeding of high-yielding energy canes. Among the 103,664 assembled unigenes, 10,115 and 728 showed significant differential expression patterns between the two extreme segregating groups in the top visible dewlap leaf and the 9th culm internode, respectively. The most enriched functional categories were photosynthesis and fermentation in the high-biomass and the low-biomass groups, respectively. Our results revealed that high-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. Group-specific expression alleles which can be applied in the development of new high-yielding energy cane varieties via molecular breeding were identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic capacity and efficiency in biomass accumulation in sugarcane

Loading next page...
 
/lp/springer_journal/transcriptomic-analysis-of-transgressive-segregants-revealed-the-4K3yBN272G
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22798-5
Publisher site
See Article on Publisher Site

Abstract

Sugarcane is among the most efficient crops in converting solar energy into chemical energy. However, due to its complex genome structure and inheritance, the genetic and molecular basis of biomass yield in sugarcane is still largely unknown. We created an F2 segregating population by crossing S. officinarum and S. spontaneum and evaluated the biomass yield of the F2 individuals. The F2 individuals exhibited clear transgressive segregation in biomass yield. We sequenced transcriptomes of source and sink tissues from 12 selected extreme segregants to explore the molecular basis of high biomass yield for future breeding of high-yielding energy canes. Among the 103,664 assembled unigenes, 10,115 and 728 showed significant differential expression patterns between the two extreme segregating groups in the top visible dewlap leaf and the 9th culm internode, respectively. The most enriched functional categories were photosynthesis and fermentation in the high-biomass and the low-biomass groups, respectively. Our results revealed that high-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. Group-specific expression alleles which can be applied in the development of new high-yielding energy cane varieties via molecular breeding were identified.

Journal

Scientific ReportsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off