Transcriptomic adaptations in rice suspension cells under sucrose starvation

Transcriptomic adaptations in rice suspension cells under sucrose starvation Sugar is an important resource for energy generation and developmental regulation in plants, and sucrose starvation causes enormous changes in cellular morphology, enzyme activities and gene expression. Genome-wide gene expression profiling provides a comprehensive knowledge of gene expression under nutrient depletion and senescence; however, that of a monocot model plant, rice, under sucrose depletion is still under investigation. Here, the time-course monitoring of gene expression profiles in sucrose-starved rice (Oryza sativa cv Tainung67) suspension cells was investigated by 21495 probes contained in Agilent rice chip. In sucrose-starved cells, the induced vacuolar biogenesis coincided with significantly upregulated transcripts of H+-pyrophosphatase, δ-TIP, one putative α-TIP, several vacuolar proteases and proteinase inhibitors, and one OsATG3. To survey the overall metabolic adaptations under sucrose depletion, the genes with significantly altered expression level were incorporated into multiple metabolic pathways. Most genes encoding enzymes involved in biosynthesis and degradation pathways of various macromolecules were comprehensively down- and upregulated, respectively, with sucrose starvation. Transcriptional regulation of gene expression is important for physiological adaptations to environmental stress, and many transcription factors, including bZIPs, NACs, and WRKY, showed significant increase in transcriptional level under sucrose starvation. Concurrently, statistical analysis revealed that their corresponding consensus cis-elements, such as ABA-responsive element, CACG, ACI, ACII and CTTATCC, were frequently found in the promoter regions of many sucrose starvation-upregulated genes. Particle bombardment-mediated and luciferase activity-based transient promoter assays revealed the CTTATCC, derived form TATCCA, and the AC motifs to be promising sucrose-starvation responsive activators in rice suspension cells. Plant Molecular Biology Springer Journals

Transcriptomic adaptations in rice suspension cells under sucrose starvation

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial